用户名: 密码: 验证码:
高海拔公路隧道施工期粉尘运移特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Migration Characteristics of Dust during Construction Stage in Highway Tunnels at High Altitude Areas
  • 作者:曹正卯 ; 刘晓 ; 牛柏川
  • 英文作者:Cao Zhengmao;Liu Xiao;Niu Baichuan;China Merchants Chongqing Communications Research and Design Institute Co.,Ltd.;Hope College,Southwest Jiaotong University;China Railway Guangzhou Group Co.,Ltd.;
  • 关键词:高海拔 ; 公路隧道 ; 施工通风 ; 粉尘质量浓度 ; 运移特性
  • 英文关键词:high altitude;;highway tunnels;;construction ventilation;;dust mass concentration;;migration characteristics
  • 中文刊名:BASE
  • 英文刊名:Chinese Journal of Underground Space and Engineering
  • 机构:招商局重庆交通科研设计院有限公司;西南交通大学希望学院;中国铁路广州铁路局集团有限公司;
  • 出版日期:2019-06-15
  • 出版单位:地下空间与工程学报
  • 年:2019
  • 期:v.15;No.114
  • 基金:国家重点研发计划(2016YFC0802210);; 西藏自治区科技计划项目(2016XZ01G31);; 承德市科学技术局项目(201706A074)
  • 语种:中文;
  • 页:BASE201903037
  • 页数:9
  • CN:03
  • ISSN:50-1169/TU
  • 分类号:294-302
摘要
为了确定不同海拔高度地区公路隧道施工期粉尘运动规律和粉尘质量浓度分布特性,依托巴朗山高海拔隧道工程展开研究。依据气固两相流理论,利用流体计算软件FLUENT,采用三维k-ε湍流非稳态离散相模型,对公路隧道施工期间粉尘质量浓度在隧道内分布特性及其浓度随海拔高度变化规律进行了三维数值模拟计算分析。研究结果表明:考虑湿度与不考虑湿度对不同海拔地区空气密度计算结果影响误差在0.3%左右;粉尘在隧道内向洞口运动的动态过程中,最高浓度逐渐降低,在隧道内呈U型形态分布趋势,靠近隧道底部的粉尘浓度高于隧道顶部粉尘浓度;随着海拔高度增加,同一测点粉尘质量浓度随海拔高度以线性形式减小,粉尘浓度海拔高度修正系数可按K=-3×10~(-5)h+1进行计算。
        The movement regularity and mass concentration distribution characteristics of dust during the construction stage of highway tunnels at different altitudes are studied based upon the Balangshan tunnel. The distribution characteristics in highway tunnel and the regularity variation at different altitudes of dust concentration are simulated and analyzed with FLUENT through the three-dimensional k-ε unsteady turbulent DPM model. The measured data agrees well with the numerical simulation results. The results indicate that the influence of air humidity at different altitudes on the deviation of air density calculation results is about 0.3%. The peak concentration of dust decreases gradually in the dynamic processes of movement to the tunnel entrance,which is U-shaped distribution in the tunnel. Dust mass concentration at the bottom of the tunnel is higher than that at the top. For the impact of environmental atmospheric pressure with the altitude increase,the mass concentration of dust decreases linearly at the same measuring point,the correction coefficient can be calculated by K =-3×10~(-5)h+1.
引文
[1]Hargreaves D M,Lowndes I S.The computational modeling of the ventilation flows within a rapid development drivage[J].Tunnelling and Underground Space Technology,2007,22(2):150-160.
    [2]Jundika C K,Agus P S,Arun S.Mujumdar.Simulation of a novel intermittent ventilation system for underground mines[J].Tunnelling and Underground Space Technology,2014,42:206-215.
    [3]Tora1o J,Torno S,Menéndez M,et al.Auxiliary ventilation in mining roadways driven with roadheaders:Validated CFD modelling of dust behaviour[J].Tunnelling and Underground Space Technology,2011,26(1):201-210.
    [4]Nakayama.Insitu measurement and simulation by CFDof methane gas distribution at a heading faces[J].Journal of the Mining and Materials Processing Institute of Japan,1998,114(11):769-775.
    [5]李志鹏.马鞍山特长高速公路隧道通风控制系统研究[J].地下空间与工程学报,2017,13(增1):400-403.(Li Zhipeng.Research on ventilation control system of Ma’an Shan extra-long highway tunnel[J].Chinese Journal of Underground Space and Engineering,2017,13(Supp.1):400-403.(in Chinese))
    [6]夏永旭,邓念兵,王永东.公路隧道火灾通风计算的改进[J].地下空间与工程学报,2014,10(4):937-942.(Xia Yongxu,Deng Nianbing,Wang Yongdong.Amelioration of calculation method for ventilation of highway tunnel during the fire[J].Chinese Journal of Underground Space and Engineering,2014,10(4):937-942.(in Chinese))
    [7]徐硕,王娜,于晓丹.地铁站台一端起火时通风模式数值分析[J].地下空间与工程学报,2016,12(增1):413-419.(Xu Shuo,Wang Na,Yu Xiaodan.Numerical analysis of ventilation mode when one end of subway platform on fire[J].Chinese Journal of Underground Space and Engineering,2016,12(Supp.1):413-419.(in Chinese))
    [8]李秀春,杨其新,蒋雅君,等.地下洞库群风仓式施工通风仿真模拟计算研究[J].地下空间与工程学报,2015,11(2):462-468.(Li Xiuchun,Yang Qixin,Jiang Yajun,et al.Numerical analysis of ventilation mode when one end of subway platform on fire[J].Chinese Journal of Underground Space and Engineering,2015,11(2):462-468.(in Chinese))
    [9]王应权.长大铁路隧道施工通风方案选择及优化[J].地下空间与工程学报,2015,11(增1):359-366.(Wang Yingquan.The selection and optimization of ventilation scheme for long railway tunnel construction[J].Chinese Journal of Underground Space and Engineering,2015,11(Supp.1):359-366.(in Chinese))
    [10]王小敏,方勇.南大梁高速公路华蓥山特长隧道施工通风方案[J].现代隧道技术,2013,50(4):188-196.(Wang Xiaomin,Fang Yong.Construction ventilation scheme for the huayingshan extra-long tunnel on the Nanchong-Dazhu-Liangping expressway[J].Modern Tunnelling Technology,2013,50(4):188-196.(in Chinese))
    [11]谭信荣,陈寿根,张恒.基于洞内空气质量测试的长大隧道施工通风优化[J].现代隧道技术,2012,49(6):152-157.(Tan Xinrong,Chen Shougen,Zhang Heng.Optimization of ventilation during the construction of a large tunnel,based on air quality testing in the tunne[J].Modern Tunnelling Technology,2012,49(6):152-157.(in Chinese))
    [12]陈举师,蒋仲安,姜兰.胶带输送巷道粉尘分布及其影响因素的实验研究[J].煤炭学报,2014,39(1):135-140.(Chen Jushi,Jiang Zhongan,Jiang Lan.Experimental research on dust distribution and its influencing factors in belt conveyer roadway[J].Journal of China Coal Society,2014,39(1):135-140.(in Chinese))
    [13]蒋仲安,陈梅岭,陈举师.巷道型采场爆破粉尘质量浓度分布及变化规律的数值模拟[J].中南大学学报(自然科学版),2013,44(3):1190-1196.(Jiang Zhongan,Chen Meiling,Chen Jushi.Numerical simulation of dust concentration distribution and changing regularities in roadway stope blasting[J].Journal of Central South University(Science and Technology Edition),2013,44(3):1190-1196.(in Chinese))
    [14]杜翠凤,王辉,蒋仲安,等.长压短抽式通风综掘工作面粉尘分布规律的数值模拟[J].北京科技大学学报,2010,32(8):957-962.(Du Cuifeng,Wang Hui,Jiang Zhongan,et al.Numerical simulations of dust distribution in a fully mechanized excavation face with far-pressing-near-absorption ventilation[J].Journal of University of Science and Technology Beijing,2010,32(8):957-962.(in Chinese))
    [15]蒋仲安,王伟.降低爆破烟尘的降尘剂配方的实验研究[J].煤炭学报,2011,36(10):1720-1724.(Jiang Zhongan,Wang Wei.Research on optimal formula of dustfall agent to remove blasting smoke[J].Journal of China Coal Society,2011,36(10):1720-1724.(in Chinese))
    [16]谭聪,蒋仲安,陈举师,等.综采割煤粉尘运移影响因素的数值模拟[J].北京科技大学学报,2014,36(6):716-721.(Tan Cong,Jiang Zhongan,Chen Jushi,et al.Numerical simulation of influencing factors on dust movement during coal cutting at fully mechanized working faces[J].Journal of University of Science and Technology Beijing,2014,36(6):716-721.(in Chinese))
    [17]赵振保,翟慧兵,王凤.综放工作面粉尘运动的数值模拟及试验研究[J].北京理工大学学报,2008,28(12):1113-1116.(Zhao Zhenbao,Zhai Huibing,Wang Feng.Numerical simulation and experiment on the dust movement at top caving mining face[J].Transactions of Beijing Institute of Technology,2008,28(12):1113-1116.(in Chinese))
    [18]秦跃平,张苗苗,崔丽洁,等.综掘工作面粉尘运移的数值模拟及压风分流降尘方式研究[J].北京科技大学学报,2011,33(7):790-794.(Qin Yueping,Zhang Miaomiao,Cui Lijie,et al.Numerical simulation of dust migration and study on dust removal modes with the forced ventilation shunt in a fully mechanized workface[J].Journal of University of Science and Technology Beijing,2011,33(7):790-794.(in Chinese))
    [19]方勇,彭佩,赵子成,等.风管出口位置对隧道施工通风效果影响的研究[J].地下空间与工程学报,2014,10(2):468-473.(Fang Yong,Peng Pei,Zhao Zicheng,et al.Numerical simulation of the effect of outlet position of air duct on the construction ventilation of the tunnel[J].Chinese Journal of Underground Space and Engineering,2014,10(2):468-473.(in Chinese))
    [20]孙忠强.公路隧道钻爆法施工粉尘运移规律及控制技术研究[D].北京:北京科技大学,2015.(Sun Zhongqiang.Study on dust migration regularity and control technology in drilling and blasting method of highway tunnel construction[D].Beijing:University of Science and Technology Beijing,2015.(in Chinese))
    [21]韩占中.FLUENT-流体工程仿真计算实例与分析[M].北京:北京理工大学出版社,2009.(Han Zhanzhong.FLUENT-fluid engineering simulation calculation example and analysis[M].Beijing:Beijing Institute of Technology Press,2009.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700