用户名: 密码: 验证码:
线圈串接方式对悬浮控制性能的影响仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of the Influence of Coil Connectionmode on Levitation Control Performance
  • 作者:张敏 ; 马卫华 ; 李铁 ; 罗世辉
  • 英文作者:ZHANG Min;MA Weihua;LI Tie;LUO Shihui;Traction Power State Key Laboratory, Southwest Jiaotong University;China Railway Group Dalian Locomotive & Rolling Stock Co., Ltd.;
  • 关键词:中低速磁浮 ; 电磁铁 ; 连接模式 ; 气隙磁密 ; 电流均值
  • 英文关键词:medium-low speed maglev;;electromagnet;;connection mode;;air gap magnetic flux density;;mean value of the current
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:西南交通大学牵引动力国家重点实验室;中车大连机车车辆有限公司;
  • 出版日期:2019-06-20
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家重点研发计划(2016YFB1200601-A03,2016YFB1200602-13);; 国家重点实验室自主研究课题(2016TPL_T03)资助项目
  • 语种:中文;
  • 页:JXXB201912017
  • 页数:8
  • CN:12
  • ISSN:11-2187/TH
  • 分类号:163-170
摘要
中低速磁浮列车每个悬浮模块包含四个电磁铁线圈,一般采用两端线圈串联的方式分别与一个控制器构成悬浮控制回路,称为一、二位连接方式(C12)。为提高磁浮车辆的悬浮性能,改善运行过程中的触轨和悬浮失效等问题,目前大部分研究从优化悬浮控制系统入手。从外部连接出发寻找较优的串接方式,提出一种新型的一、三位连接方式(C13),通过动力学和电磁仿真将两种连接方式进行详细的对比。研究结果表明:在通过相同轨道垂向激励时,一、三位连接方式悬浮架与轨道的最小距离更大,即离轨道更远;用于调整的控制器平均电流更低。所以从安全性和线圈发热考虑,一、三位连接方式优于一、二位。提出一种新型的线圈连接方式,证明了其优越性,可为工程应用提供选择依据。
        In the medium-low speed maglev vehicle, each levitation module contains four electromagnet coils. Generally, two adjacent coils at the module end in series with one controller, which is called control mode of series connection in the 1st and 2nd coils(C12). In order to enhance the levitation performance and improve the problems such as touching the rail and levitation failure in the process of running, many researches start from levitation control system optimization. The external connection mode is started from, and a new type of control mode of series connection in the 1 st and 3 rd coils(C13) is proposed. Many detailed comparisons of the two modes are made by dynamic and electromagnetic simulation. When passing through the same rail excitation, the results show that the minimum distance between the levitation frame and the rail in C13 is larger than that in C12, that is, farther from the rail; the average current of the controller in C13 is lower. Therefore, considering the safety and coil overheating, C13 performs better than C12. A new type of coil connection mode is proposed and its superiority is proved, which provides a basis for engineering applications.
引文
[1]LEE H W,KIM K C,JU L.Review of maglev train technologies[J].IEEE Transactions on Magnetics,2006,42(7):1917-1925.
    [2]CUI P,LI J,ZHANG K,et al.Design of the suspension controller based on compensating feedback linearization[C]//2010 International Conference on Measuring Technology and Mechatronics Automation.Changsha City,China:IEEE,2010:1056-1059.
    [3]LIU D S,LI J,ZHANG K.The design of the nonlinear suspension controller for EMS maglev train based on feedback linearization[J].Journal of National University of Defense Technology,2005,27(2):96-101.
    [4]LI J H,LI J.A practical nonlinear controller for levitation system with magnetic flux feedback[J].Journal of Central South University,2016,23(7):1729-1739.
    [5]鲍佳,张昆仑.单磁铁电磁悬浮系统研究[J].计算机测量与控制,2003,11(11):863-865.BAO Jia,ZHANG Kunlun.Research of electromagnetic suspension system of single magnetic[J].Computer Measurement and Control,2003,11(11):863-865.
    [6]黎松奇,张昆仑.单磁铁悬浮系统自激振动的稳定性分析及抑制[J].西南交通大学学报,2015,50(3):410-416.LI Songqi,ZHANG Kunlun.Self-excited vibration of single-magnet suspension system:stability analysis and inhibition[J].Journal of Southwest Jiaotong University,2015,50(3):410-416.
    [7]龙志强,薛松,陈慧星.基于LMI的磁浮列车悬浮系统被动容错控制[J].计算机仿真,2008,25(2):265-268.LONG Zhiqiang,XUE Song,CHEN Huixing.Passive fault tolerant control for suspension system of maglev train based onLMI[J].Computer Simulation,2008,25(2):265-268.
    [8]YANG J,ZOLOTAS A,CHEN W H,et al.Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach[J].ISATransactions,2011,50(3):389-396.
    [9]LIU H K,CHANG W.Double-loop control of maglev train[J].Control Engineering of China,2007,14(2):198-200.
    [10]刘国清,张昆仑,陈殷.HSST型磁浮列车悬浮电磁铁的优化设计[J].微特电机,2013(3):33-35,39.LIU Guoqing,ZHANG Kunlun,CHEN Yin.Optimal design of electromagnet in HSST vehicle’s levitation system[J].Small&Special Electrical Machines,2013(3):33-35,39.
    [11]刘少克,倪鸿雁,张葵葵.基于数值分析的磁浮列车悬浮电磁铁电磁场分布研究[J].铁道学报,2007(6):40-43.LIU Shaoke,NI Hongyan,ZHANG Kuikui.Research for electromagnetic field of suspension electromagnet of maglev train based on numerical analysis[J].Journal of the China Railway Society,2007(6):40-43.
    [12]刘慧敏,尹力明.磁悬浮列车悬浮电磁铁电磁场的有限元分析[J].机车电传动,2004(6):32-34.LIU Huimin,YIN Liming.Finite element analysis on electromagnetic field of levitation magnet of maglev train[J].Electric Drive for Locomotives,2004(6):32-34.
    [13]LIU S,GUO Z,CHEN G.3D Electromagnetic field analysis for mixing suspension electromagnet used by maglev train[C]//2010 International Conference on Electrical and Control Engineering(ICECE).Wuhan,China:IEEE,2010:5-7.
    [14]CHEN G R,ZHENG L L,ZHOU D F.Study on the characteristics of the maglev electromagnet considering the magnetic field induced by eddy current[J].Applied Mechanics and Materials.2013,392:413-419.
    [15]DING J F,LONG Z Q,YANG X.Numerical analysis of eddy current effect of EMS system for medium-low speed maglev train[C]//2017 2nd International Conference on Robotics and Automation Engineering(ICRAE).Shanghai,PEOPLESR CHINA:IEEE,2017:301-305.
    [16]郑丽莉,李杰,李金辉.钢轨涡流对磁浮列车悬浮电磁力影响的研究[J].计算机仿真,2011,28(8):328-331,336.ZHENG Lili,LI Jie,LI Jinhui.Research on influence of eddy current induced in steel rails on levitation force of maglev[J].Computer Simulation,2011,28(8):328-331,336.
    [17]ZHANG M,LUO S H,GAO C,et al.Research on the mechanism of a newly developed levitation frame with mid-set air spring[J].Vehicle System Dynamics,2018:1-21.
    [18]WANG K R,LUO S H,MA W H,et al.Dynamic characteristics analysis for a new-type maglev vehicle[J].Advances in Mechanical Engineering,2017,9(12):1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700