用户名: 密码: 验证码:
超高压容器爆破压力计算公式的精度比较
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Precision Comparison of Calculation Formulas for Ultra-high Pressure Vessel Burst Pressure
  • 作者:刘岑 ; 吴森林 ; 杨帆 ; 洪凯 ; 张恕 ; 刘小宁
  • 英文作者:Liu Cen;Wu Senlin;Yang Fan;Hong Kai;Zhang Shu;Liu Xiaoning;School of Mechanical and Electrical Engineering,Hubei Light Industry Technology Institute;School of Mechanical and Engineering,Wuhan Institute of Technology;School of Mechanical Engineering,Wuhan Polytechnic College of Software and Engineering;
  • 关键词:超高压容器 ; 爆破压力 ; 计算公式 ; 精度
  • 英文关键词:ultra-high pressure vessel;;burst pressure;;calculating formula;;precision
  • 中文刊名:YLRQ
  • 英文刊名:Pressure Vessel Technology
  • 机构:湖北轻工职业技术学院机电工程学院;武汉工程大学机电工程学院;武汉软件工程职业学院机械工程学院;
  • 出版日期:2019-05-30
  • 出版单位:压力容器
  • 年:2019
  • 期:v.36;No.318
  • 基金:湖北省教育厅科研项目(B2018473);; 武汉黄鹤英才(教育)计划(2016)项目
  • 语种:中文;
  • 页:YLRQ201905007
  • 页数:8
  • CN:05
  • ISSN:34-1058/TH
  • 分类号:47-53+70
摘要
应用数理统计知识,构建了超高压容器爆破压力计算公式精度的比较方法,基于实测爆破压力范围220.7~1 326.3 MPa的试验数据,对流变应力公式与福贝尔公式的精度进行了分析比较。研究表明:在显著度为0. 05时,实测爆破压力与两个公式理论值之比基本符合正态分布的随机变量;在双侧置信度为98%时,两个随机变量的分布参数无显著差异,可视为同一个符合正态分布的随机变量;该随机变量的均值位于1. 004 4~1. 047 2之间,标准差位于0. 061 24~0. 107 8之间,变异系数位于0. 058 48~0. 107 3之间;若设计压力不低于100 MPa,流变应力公式与福贝尔公式的精度无显著差异。
        By applying mathematical statistics knowledge,the precision comparison method of ultra-high pressure vessel burst pressure calculating formula was developed; based on test data with the measured burst pressure range of 220. 7 ~ 1 326. 3 MPa,the precision of rheological stress formula and precision of Faupel formula were analyzed and compared. Research results indicate that: When the significance was 0. 05,the ratios of the measured burst pressure to the theoretical values of the two formulas were basically in agreement with the normally distributed random variable,respectively. When the bilateral confidence limit was 98%,there was not significant difference in the distribution parameters of the two random variables,they can be considered as the same variable as a random variable conforming to normal distribution; the mean value of the random variables was between 1. 004 4 and 1. 047 2,the standard deviation was between 0. 061 24 and 0. 107 8,and the variation coefficient was between 0. 058 48 and 0. 107 3; if the design pressure was not less than 100 MPa,there was no significant difference in precision between the rheological stress formula and the Faupel formula.
引文
[1]刘威,李涛,郑津洋,等.超高压容器规范标准最新进展[J].压力容器,2014,31(12):47-54.
    [2]超高压容器:GB/T 34019—2017[S].
    [3]陈志伟,李涛,杨国义,等. GB/T 34019—2017《超高压容器》标准分析[J].压力容器,2019,36(4):46-51.
    [4]邵国华,魏龙灿.超高压容器[M].北京:化学工业出版社,2002:20-36.
    [5]化学工程手册编辑委员会.化工应用数学[M].北京:化学工业出版社,1983:30-374.
    [6]熊德之,张志军.概率论与数理统计及其应用[M].北京:科学出版社,2007:151-266.
    [7]李生昌.压力容器爆破压力的确定[J].化工机械,1987,14(2):120-123.
    [8]黄载生.超高压容器爆破压力计算[J].压力容器,1992,9(3):74-77.
    [9]朱学政,陈国理.高压容器爆破压力的计算[J].石油化工设备技术,1995,16(1):23-26.
    [10]袁格侠,刘宏昭,钱学梅,等.求解超高压筒形容器爆破压力的神经网络方法[J].兵器材料科学与工程,2010,33(2):31-34.
    [11]钟汉通,陈国理,王作池.超高压聚乙烯反应管爆破试验[J].压力容器,1991,8(2):40-43.
    [12]刘岑,刘小宁,刘兵,等.拓展设计公式应用范围的精度比较法[J].机械强度,2018,40(1):145-153.
    [13]刘小宁,刘岑,刘兵,等.屈强比对容器爆破压力计算公式精度的影响[J].应用力学学报,2017,34(1):142-148.
    [14]刘岑,杨帆,刘兵,等.室温与超低温时奥氏体不锈钢S30408的屈强比[J].武汉工程大学学报,2018,40(2):228-232.
    [15]刘岑,杨帆,吴元祥,等.钢材拉伸试验数据同质性的判别[J].武汉工程职业技术学院学报,2017,29(2):17-19.
    [16]刘小宁,刘岑,陈帆,等.不同批次试验数据同质性的判别[J].武汉工程职业技术学院学报,2018,30(2):8-12.
    [17]刘小宁,刘岑,杨帆,等.概率分布假设检验中有效数据的重新分组[J].武汉工程职业技术学院学报,2018,30(3):18-21.
    [18]刘小宁,刘岑,张红卫,等.薄壁球形容器爆破压力计算公式精度研究[J].压力容器,2016,33(3):32-38.
    [19]刘小宁,刘岑,吴元祥,等.超高压圆筒容器爆破压力计算公式的比较[J].机械强度,2015,37(2):373-376.
    [20]刘小宁,刘岑,刘兵,等.承压容器爆破压力计算公式的评价方法研究[J].机械强度,2017,39(6):1409-1417.
    [21]袁小会,刘岑,吴元祥,等.单层厚壁圆筒容器爆破压力的分布规律与参数[J].武汉工程大学学报,2014,36(2):49-55.
    [22]杨帆,刘岑,刘兵,等.桥梁结构钢机械性能指标的概率分布[J].工业安全与环保,2018,44(9):64-67.
    [23]刘小宁,杨帆,刘岑,等.奥氏体不锈钢预应变效果评价[J].机械强度,2019,41(1):104-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700