用户名: 密码: 验证码:
模块式小型堆反应堆压力容器内支承环和筒体焊接残余应力数值计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation on welding residual stress of supporting ring and cylinder in reactor pressure vessel of small modular reactor
  • 作者:邱阳 ; 罗英 ; 杨敏 ; 陈海波 ; 邱天 ; 杨立才 ; 王昫心 ; 郑浩 ; 吴昊
  • 英文作者:QIU Yang;LUO Ying;YANG Min;CHEN Haibo;QIU Tian;YANG Licai;WANG Xuxin;ZHENG Hao;WU Hao;Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China;
  • 关键词:模块式小型堆 ; 反应堆压力容器 ; 支承环 ; 筒体 ; 焊接残余应力 ; 数值模拟 ; 有限元法
  • 英文关键词:small modular reactor;;reactor pressure vessel;;supporting ring;;cylinder;;welding residual stress;;numerical simulation;;finite element method
  • 中文刊名:DHJI
  • 英文刊名:Electric Welding Machine
  • 机构:中国核动力研究设计院核反应堆系统设计国家级重点实验室;
  • 出版日期:2019-07-20
  • 出版单位:电焊机
  • 年:2019
  • 期:v.49;No.386
  • 语种:中文;
  • 页:DHJI201907001
  • 页数:6
  • CN:07
  • ISSN:51-1278/TM
  • 分类号:9-14
摘要
通过有限元数值模拟研究300 mm厚模块式小型堆反应堆压力容器(RPV)内支承环和筒体焊接模拟件的残余应力分布,并采用小孔法测试验证计算结果。结果表明,模拟件焊缝区域径向应力沿厚度呈自平衡分布,上下表面区域径向应力为拉伸应力,内部为压缩应力;焊缝区域环向应力为基本拉伸应力,上下表面区域应力大于内部环向应力,峰值拉伸环向应力出现在距表面一定深度位置;最小环向及径向应力在焊缝中心线上的位置由模拟件第二步焊接工序完成后的焊缝金属高度决定;由于第一步和第二步焊接后模拟件刚度足够大,第一步焊接的焊缝金属表面位置处应力变化较大。
        The welding residual stress of reactor pressure vessel's(RPV)supporting ring and cylinder welded mockup with a thickness of 300 mm was investigated with the finite element method,and the stress was measured with the hole-drilling method to validate the simulated result. The investigated results shows that the through-thickness radial stress distribution within the weld zone presents a self-equilibrating distribution,and the through-thickness hoop stress within the weld zone is almost tensile stress with the peak tensile stress occurring at a certain depth beneath the surfaces and a minimum stress appears near the mid-thickness. The location where the minimum hoop and radial stress appears at the weld centerline is decided by the weld metal height of the second welding step for the welding procedure used in the present study. In addition,a large stress change occurs near the top surface of the weld metal after the first welding step due to the strong stiffness of the mockups.
引文
[1]Withers P J.Residual stress and its role in failure[J].Reports on Progress in Physic,2007(70):2211-2264.
    [2]James MN.Residual stress influences on structural reliability[J].Engineering Failure Analysis,2011,18(8):1909-1920.
    [3]Dong P,Brust F W.Welding residual stresses and effects on fracture in pressure vessel and piping components:a millennium review and beyond[J].Journal of Pressure Vessel Technology,2000,122(3):329-338.
    [4]Webster G A,Ezeilo A N.Residual stress distributions and their influence on fatigue lifetimes[J].International Journal of Fatigue,2001,23(s1):375-383.
    [5]LiuC,ZhangJ X,Xue C B.Numerical investigation on residual stress distribution and evolution during multi-pass narrow gap welding of thick-walled stainless steel pipes[J].Fusion Engineering and Design,2011,86(4-5):288-295.
    [6]JiangW,WooW,WanY,et al.Evaluation of through thickness residual stresses by neutron diffraction and finite-element method in thick weld plates[J].Journal of Pressure Vessel Technology,2017,139,031401-1-10.
    [7]Lindgren L E,Runnemalm H,N覿sstr觟m MO.Simulation of multipass welding of a thick plate[J].International Journal for Numerical Methods in Engineering,1999(44):1301-1316..
    [8]Tan L,Zhang J X,Zhuang D,et al.Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding[J].Nuclear Engineering and Design,2014(273):47-57.
    [9]Liu C,Yang JW,Shi Y F,et al.Modelling of residual stresses in a narrow-gap welding of ultra-thick curved steel mockup[J].Journal of Materials Processing Technology,2018(256):239-246.
    [10]Mitra A,Prasad N S,RamG D J.Estimation of residual stresses in an 800 mm thick steel submerged arc weldment[J].Journal of Materials Processing Technology,2016(229):181-190.
    [11]Liu C,Luo Y,Yang M,et al.Three-dimensional finite element simulation of welding residual stress in RPV with two J-groove welds[J].Welding in the world,2017,61(1):151-160.
    [12]ASTM International.Standard test method for determining residual stresses by the hole-drilling strain gage method[S].ASTM E837-08,West Conshohocken,PA,United States.
    [13]陈怀宁,陈亮山,董秀中.盲孔法测量残余应力的钻削加工应变[J].焊接学报,1994,15(4):276-279.
    [14]Muránsky O,Smith M C,Bendeich P J,et al.Validated numerical analysis of residual stresses in Safety Relief Valve(SRV)nozzle mock-ups[J].Computational Materials Science,2011(50):2203-2215.
    [15]BarsoumZ.Residualstresspredictionandrelaxationinwelded tubular joint[J].Welding in the World,2007,51(1-2):23-30.
    [16]Dong P.On the mechanics of residual stresses in girth welds[J].Journal of Pressure Vessel Technology,2007,129(3):345-354.
    [17]Bouchard P J.Validated residual stress profiles for fracture assessments of stainless steel pipe girth welds[J].International Journal of Pressure Vessels and Piping 2007,84(4):195-222.
    [18]Bouchard P J,Withers P J.The appropriateness of residual stresslengthscalesinstructuralintegrity[J].Journal of Neutron Research,2004,12(1-3):81-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700