用户名: 密码: 验证码:
高温合金差示扫描量热分析(DSC)的影响因素研究:合金状态和升/降温速率
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influencing Factors of Differential Scanning Calorimetry (DSC) Analysis of Superalloy: Alloy State and Heating/Cooling Rate
  • 作者:郑亮 ; 刘玉峰 ; 刘杨 ; 王悦 ; 张轶波 ; 刘娜 ; 许文勇 ; 袁华 ; 李周 ; 张国庆
  • 英文作者:Zheng Liang;Liu Yufeng;Liu Yang;Wang Yue;Zhang Yibo;Liu Na;Xu Wenyong;Yuan Hua;Li Zhou;Zhang Guoqing;Science and Technology on Advanced High Temperature Structural Materials Laboratory Beijing Institute of Aeronautical Materials;
  • 关键词:镍基高温合金 ; 625合金 ; DSC ; 粉末 ; 热等静压 ; 铸态组织 ; 偏析
  • 英文关键词:Ni-base superalloy;;alloy 625;;DSC;;powder;;HIP;;as-cast microstructure;;segregation
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:北京航空材料研究院先进高温结构材料重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.395
  • 基金:国家重点研发计划(2016YFB0701404);; 国家科技支撑计划(2015BAE03B01);; 国家自然科学基金(51304177);; 国家国际科技合作专项(2012DFA50240);; 装发预研重点实验室基金(9140C430202150C43200)
  • 语种:中文;
  • 页:COSE201906035
  • 页数:10
  • CN:06
  • ISSN:61-1154/TG
  • 分类号:232-241
摘要
对固溶强化型镍基高温合金(625合金)进行升、降温差示扫描量热分析(DSC)试验,研究了同一合金不同状态(粉末态、热等静压态和铸态)以及升/降温速率(5~10℃/min)对相变温度的影响。采用场发射扫描电镜(FESEM)、电子探针(EPMA)对不同状态625合金的微观组织和元素分布进行表征。结果表明:(1)铸态比粉末态合金的枝晶间距大2个数量级,而热等静压态合金为无枝晶偏析的细等轴晶结构。(2)升/降温速率对DSC曲线中加热时开始熔化温度(等于固溶强化型合金的初熔温度)和冷却时开始凝固温度(偏离基线的拐点)无影响,但对合金加热时熔化结束、冷却时大量凝固析出温度(峰位)和终凝温度(拐点)有明显影响。采用加热、冷却曲线相应相变温度平均值的方法可减少DSC试验和样品条件的影响,获得相对固定且更具可比性的合金相变温度。(3)合金状态对初熔温度和DSC加热曲线固相线附近的圆弧段有明显影响。根据DSC加热曲线固相线附近的圆弧大小可以判断合金的偏析倾向,弱偏析倾向的粉末态和热等静压态625合金DSC加热曲线固相线附近拐点尖锐,表现为合金开始熔化温度(偏离基线的拐点)与名义固相线温度(切线交点)差异很小,分别仅为5和6℃;偏析倾向较大的铸态625合金的DSC加热曲线中固相线附近为较大圆弧,开始熔化温度与名义固相线温度差异可达52℃。铸态625合金的初熔温度比热等静压态和粉末态分别低45和40℃,在实际热处理和热等静压等热工艺参数选择时应注意圆弧段较大的合金降低初熔温度的影响。在所有DSC冷却曲线中,由于完全熔化重新凝固消除了合金原始显微组织特征,不同状态625合金固相线附近曲线形态相似,均为较大的圆弧。
        Differential scanning calorimeter(DSC) tests were performed on solid-solution strengthening Ni-base superalloy 625,considering the effects of the alloy state(powder, HIPed and as-cast) and heating/cooling rate(5, 10 °C/min) on the phase transformation temperatures. The alloys in different states were characterized by FESEM and EPMA. The results indicate that(1) the dendritic arm spacing of the as-cast alloy is 2 orders of magnitude higher than that of the 625 alloy powders, whereas the hot isostatic pressed(HIPed)alloys possess a fine equiaxed grain structure without dendritic segregation.(2) The heating/cooling rates have no significant influence on the onset of matrix melting(equal to the incipient melting temperature for the solid-solution strengthening superalloy) and onset of solidification temperatures(inflection point), but have an obvious effect on the melting end, matrix mass solidification temperatures(peak position) and solidification end temperature(inflection point) of the alloy. The method of average phase transformation temperature on heating and cooling curve can reduce the influence of DSC test or sample conditions and obtain a relatively fixed and comparable phase transformation temperature.(3) The alloy state has obvious effect on incipient melting temperature and the arc shape near solidus temperature of DSC heating curve. The segregation tendency of the alloy can be determined by the radian near the solidus region of DSC heating curve. The powders and HIPed 625 alloys with weak segregation tendency exhibit a sharp inflection point in DSC heating curves in the region near solidus temperature; there is only a 5~6 °C gap between the onset of matrix melting temperature of the alloy(deviation from the baseline inflection point) and the nominal solidus temperature(tangent-onset intersection). The DSC heating curve of the as-cast625 alloy with a high segregation tendency exhibit a larger radian near the solidus region, and the difference between the onset of matrix melting temperature and the nominal solidus temperature(tangent-onset intersection) can reach 52 °C. The onset of matrix melting temperatures of as-cast 625 alloys are 45 °C and 40 °C lower than that of the HIPed and powder 625 alloy, respectively. The parameter of the process such as HT or HIP should be selected concerning the effect of the alloy state with large radian near solidus region of DSC heating curve on decreasing the incipient melting temperature. The DSC cooling curves for the different states of 625 alloys are similar,which all possess a large radian near the solidus region, because the alloys are completely remelted which eliminates the original microstructure features and re-solidified from the full liquid state.
引文
[1]Sims C T,Stoloff N S,Hagel W C.Superalloys II[M].NewYork:Wiley-Interscience,1987
    [2]Reed R C.The Superalloys:Fundamentals and Applications[M].Cambridge:Cambridge University Press,2006:122
    [3]Pollock T M,Tin S.Journal of Propulsion&Power[J],2006,22:361
    [4]Craig B.Advanced Materials&Processes[J],2008,166(5):33
    [5]Zheng L,Zhang G,Lee T L et al.Mater Des[J],2014,61:61
    [6]Zhou T,Ding H,Ma X et al.Mater Sci Eng A[J],2018,725:299
    [7]Burton C J,Boesch W J.Met Prog[J],1975(5):121
    [8]Zheng Yunrong(郑运荣),Cai Yunlin(蔡玉林),Wang Luobao(王罗宝).Acta Mtallurgica Sinica(金属学报)[J],1983,19(3):30
    [9]Feng Q,Nandy T K,Tin S et al.Acta Mater[J],2003,51:269
    [10]Kearsey R M,Beddoes J C,Jaasalu K M et al.Superalloys2004[C].Warrendale:TMS,2004:801
    [11]Bai Guanghai(柏广海),Hu Rui(胡锐),Li Jinshan(李金山)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2011,40(10):1737
    [12]Jiao Sha(焦莎),Zhang Jun(张军),Jin Tao(金涛)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2013,42(5):1028
    [13]Zhou Wei(周伟),Liu Lin(刘林),Jie Ziqi(介子奇)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2014,43(12):3082
    [14]Fang Jiao(方姣),Liu Chenze(刘琛仄),Liu Jun(刘军)et al.The Chinise Journal of Nonferrous Metals(中国有色金属学报)[J],2015,25(12):3352
    [15]Ruan J,Ueshima N,Oikawa K.J Alloy Compd[J],2018,737:83
    [16]Zheng Yunrong(郑运荣),Chen Hong(陈红).Journal of Material Engineering(材料工程)[J],1985(1):10
    [17]Sponseller D L.Superalloys 1996[C].Warrendle:TMS,1996:259
    [18]Zheng Liang(郑亮),Xiao Chengbo(肖程波),Tang Dingzhong(唐定中)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2008,37(9):1539
    [19]Liu G,Liu L,Zhao X et al.Metall Mater Trans A[J],2011,42(9):2733
    [20]Zheng Liang(郑亮),Xiao Chengbo(肖程波),Zhang Guoqing(张国庆)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2012,41(8):1457
    [21]Shi Z,Dong J,Zhang M et al.J Alloy Compd[J],2013,571:168
    [22]Zheng L,Zhang G,Xiao C et al.Scr Mater[J],2014,74:84
    [23]Zhou Jingyi(周静怡),Zhao Wenxia(赵文侠),Zheng Zhen(郑真).Journal of Material Engineering(材料工程)[J],2014(8):90
    [24]Gong L,Chen B,Du Z et al.J Mater Sci Tech[J],2018,34(3):541
    [25]Cantor B.J therm Anal[J],1994,42(4):647
    [26]Zheng Liang(郑亮),Xu Wenyong(许文勇),Liu Na(刘娜)et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2018,47(2):530
    [27]Suave L M,Bertheau D,Cormier J.Eurosuperalloy 2014[C].https://doi.org/10.1051/matecconf/20141421001
    [28]Jin Kaiming(金凯明),Wang Zhigang(王志刚),Yuan Ying(袁英)et al.Chinese Superalloys Handbook(中国高温合金手册)[M].Beijing:Standards Press of China,2012:198
    [29]Zheng Liang(郑亮),Liu Yufeng(刘玉峰),Gorley Michael J.et al.Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2019,48(5):1591
    [30]Li Nan(李楠),Kong Huanping(孔焕平),Du Borui(杜博睿)et al.Failure Analysis and Prevention(失效分析与预防)[J],2016,11(2):124
    [31]Zheng L,Lee T L,Liu N et al.Mater Des[J],2017,117:157
    [32]Shi Qianying,Ding Xuanfei,Wang Meiling et al.Metall Mater Trans A[J],2014,45(4):1833
    [33]Zhang J,Singer R F.Acta Mater[J],2002,50(7):1869

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700