用户名: 密码: 验证码:
新型表面活性剂对铝合金的复配缓蚀行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion Inhibition Behavior of Aluminum Alloy by Novel Surfactant
  • 作者:杜娟 ; 陈翘楚 ; 刘青茂 ; 胡雪兰
  • 英文作者:DU Juan;CHEN Qiaochu;LIU Qingmao;HU Xuelan;Sino-European Institute of Aviation Engineering,Civil Aviation University of China;
  • 关键词:双分子表面活性剂 ; 异丙胺 ; 缓蚀 ; 协同
  • 英文关键词:Gemini surfactant;;isopropylamine;;inhibition;;synergism
  • 中文刊名:CLKX
  • 英文刊名:Journal of Materials Science and Engineering
  • 机构:中国民航大学中欧航空工程师学院;
  • 出版日期:2019-06-20
  • 出版单位:材料科学与工程学报
  • 年:2019
  • 期:v.37;No.179
  • 基金:中央高校基本科研业务费中国民航大学专项资助项目(3122018Z006)
  • 语种:中文;
  • 页:CLKX201903015
  • 页数:9
  • CN:03
  • ISSN:33-1307/T
  • 分类号:85-92+103
摘要
以异丙基亚氨基(>NCH(CH3)2)作为连接基团,通过二步法合成了一种新型双季铵盐阳离子表面活性剂——二[2-羟基-3-(十二烷基二甲基季铵基)丙基]-异丙胺二氯化表面活性剂,进而用各种实验方法对合成产物进行结构表征;分别将其与阴离子表面活性剂十二烷基苯磺酸钠(SDBS)和稀土元素氯化铈进行复配,研究复配体系对铝合金在盐酸溶液中的缓蚀性能和机理。结果表明:两复配体系均能产生良好的协同作用:当合成产物与SDBS配比为3∶4时,缓蚀效率为97.4%;当合成产物与氯化铈配比为1∶1时,缓蚀效率为96.4%。合成产物与SDBS复配的缓蚀机理为利用静电吸附作用在铝合金表面形成致密吸附膜;合成产物与氯化铈复配的缓蚀机理为氯化铈可先在溶液中形成配合物,该配合物进一步吸附于金属表面从而起到协同缓蚀作用。
        Isopropylamine was taken as a raw material to synthesize a new multi-alkyl multiple quaternary ammonium salts Gemini surfactant bis [2-hydroxy-3-(dodecyldimethylammonio)propyl]-isopropylamine dichloride.The structure of the synthetic product was characterized experimentally.Inhibition efficiencies and inhibition mechanisms of the synthetic product+SDBS and synthetic product+CeCl_3·7H_2O compound systems to aluminum alloy in hydrochloric acid solution were studied.Results indicate that,synergistic effects of the two compound systems are ideal:IE(Cproduct∶CSDBS=3∶4)=97.4%,IE(Cproduct∶CCeCl_3=1∶1)=96.4%.Synthetic product+ SDBS plays a role in inhibition mainly by forming a dense adsorption film,while the synthetic product+ CeCl_3·7H_2O can form a complex in the solution and be adsorbed on the aluminum alloy,thus improving the inhibition effect.
引文
[1]王彬彬,王振尧,曹公望,等.2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为[J].金属学报,2014,50(1):49~56.
    [2]Hany M.A E-L,Mohamed A.A-R,Ahmed H.T.Empirical and quantum chemical studies on the corrosion inhibition performance of some novel synthesized cationic gemini surfactants on carbon steel pipelines in acid pickling processes[J].Corrosion Science,2016,108:94~110.
    [3]Hegazy M A,Nazeer A A,Shalabi K.Electrochemical studies on the inhibition behavior of copper corrosion in pickling acid using quaternary ammonium salts[J].Journal of Molecular Liquids,2015,209:419~427.
    [4]Hegazy M A,Badawi A M,Rehim S S A E,et al.Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy)ethyl)-N,N-dimethyl dodecan-1-aminium bromide during acid pickling[J].Corrosion Science,2013,69(2):110~122.
    [5]Singh P,Quraishi M A,Ebenso E E,et al.Ultrasound assisted synthesis of chalcones as green corrosion inhibitors for mild steel in 1M hydrochloric solution[J].International Journal of Electrochemical Science,2014,9(12):7446~7459.
    [6]Kang E K,Lee B M,et al.A novel cationic surfactant having two quaternary ammonium ions[J].Journal of Industrial&Engineering Chemistry,2011,17(5~6):845~852.
    [7]Kim T S,Kida T,Yohji Nakatsuji A,et al.Preparation and properties of multiple ammonium salts quaternized by epichlorohydrin[J].Langmuir,2000,12(26):180~184.
    [8]Lim J C,Park J M,Chan J P,et al.Synthesis and surface active properties of a gemini-type surfactant linked by aquaternary ammonium group[J].Colloid&Polymer Science,2013,291(4):855~866.
    [9]Lim J C,Kang E K,Park J M,et al.Syntheses and surface active properties of cationic surfactants having multi ammonium and hydroxyl groups[J].Journal of Industrial&Engineering Chemistry,2012,18(4):1406~1411.
    [10]Liu X P,Feng J,Zhang L,et al.Synthesis and properties of a novel class of anionic Gemini surfactants with polyoxyethylene spacers[J].Colloids&Surfaces A:Physicochemical&Engineering Aspects,2010,362(1):39~46.
    [11]Pei X M,You Y,Zhao J X,et al.Adsorption and aggregation of2-hydroxyl-propanediyl-α,ω-bis(dimethyldodecyl ammonium bromide)in aqueous solution:Effect of intermolecular hydrogen-bonding[J].Joural of Colloid and Interface Science,2010,351(2):457~465.
    [12]Miao Z C,Wang F,et al.Preparation of novel gemini quaternary ammonium salt cationic surfactant[J].Applied Mechanics and Materials,2012,174~177(1004~1005):1433~1436.
    [13]Abdel-Salam F H,El-Said A G.Synthesis and surface active properties of Gemini cationic surfactants and interaction with anionic azo dye(AR52)[J].Journal of Surfactants and Detergents,2011,14(3):371~379.
    [14]Negm N A,MohamedA S.Synthesis,characterization and biological activity of sugar-based Gemini cationic amphiphiles[J].Journal of Surfactants and Detergents,2008,11(3):215~221.
    [15]Qiu L G,Wu Y,Wang Y M,et al.Synergistic effect between cationic gemini surfactant and chloride ion for the corrosion inhibition of steel in sulphuric acid[J].Corrosion Science,2008,50(2):576~582.
    [16]Hegazy M A,Abdallah M,Ahmed H.Novel cationic gemini surfactants as corrosion inhibitors for carbon steel pipelines[J].Corrosion Science,2010,52(9):2897~2904.
    [17]Ray S,Majumder A,Bandyopadhyay M,et al.Electrochemical effect of cationic Gemini surfactant and halide salts on corrosion inhibition of low carbon steel in acid medium[J].Corrosion Science,2010,52(3):794~800.
    [18]Asefi D,Mahmoodi N M,Arami M.Effect of nonionic cosurfactants on corrosion inhibition effect of cationic gemini surfactant[J].Colloids&Surfaces A:Physicochemical&Engineering Aspects,2010,355(1~3):183~186.
    [19]Adewuyi A,G9pfert A,Wolff T.Succinyl amide gemini surfactant from adenopus breviflorus,seed oil:a potential corrosion inhibitor of mild steel in acidic medium[J].Industrial Crops&Products,2014,52(1):439~449.
    [20]Mobin M,Masroor S.Cationic Gemini Surfactants as novel corrosion inhibitor for mild steel in 1M HCl[J].International Journal of Electrochemical Science,2012,7(8):6920~6940.
    [21]Ansari,Quraishi F A,M.A.Inhibitive Performance of gemini surfactants as corrosion inhibitors for mild steel in formic acid[J].Portugaliae Electrochimica Acta,2010,28(5):321~335.
    [22]Tikariha D,Ghosh K K,Barbero N,et al.Micellization properties of mixed cationic gemini and cationic monomeric surfactants in aqueous-ethylene glycol mixture[J].Colloids&Surfaces A:Physicochemical&Engineering Aspects,2011,381(1):61~69.
    [23]刘明书,唐善法,方飞飞,等.有机阴离子对阳离子双子表面活性剂溶液黏温性能的影响[J].精细石油化工进展,2012,13(11):25~28.
    [24]Khan I A,Mohammad R,et al.Mixed micellization of cationic gemini surfactants with primary linear alkylamines[J].Journal of Surfactants&Detergents,2010,13(2):179~188.
    [25]张漫路,赵景茂.缓蚀剂协同效应与协同机理的研究进展[J].中国腐蚀与防护学报,2016,36(1):1~10.
    [26]闵红博,梅平,赖璐,等.多季铵盐表面活性剂的合成及流变性能研究[J].日用化学工业,2015(6):301~305.
    [27]戈仁刚,赵琳,赖璐,等.三头基双链季铵盐Gemini表面活性剂合成研究[J].长江大学学报(自然科学版)理工卷,2010(2):17~20;405.
    [28]李向红,邓书端,付惠,等.稀土Ce4+和香兰素在H3PO4介质中对钢的缓蚀协同效应[J].应用化学,2010,27(7):836~840.
    [29]Li X H,Deng S D,Fu H,et al.Synergism between rare earth cerium(IV)ion and vanillion on the corrosion of steel in H2SO4solution:weight loss,electrochemical,UV-Vis,FTIR,XPS and AFM approaches[J].Applied Surface Science,2008,254(17):5574~5586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700