用户名: 密码: 验证码:
聚酰胺胺改性纳米二氧化硅的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Developments of Nano-silica Modified by Poly(amide-amine)
  • 作者:何海峰 ; 寇新秀 ; 吕海亮 ; 白瑞 ; 刘欣 ; 靳涛
  • 英文作者:HE Haifeng;KOU Xinxiu;LYU Hailiang;BAI Ruiqin;LIU Xin;JIN Tao;College of Materials Science and Engineering,Shandong University of Science and Technology;College of Chemical and Environmental Engineering,Shandong University of Science and Technology;
  • 关键词:聚酰胺胺 ; 纳米二氧化硅 ; 嫁接技术 ; 密度泛函理论 ; 干法改性
  • 英文关键词:poly(amide-amine);;nano silicon dioxide;;grafting technology;;density-functional theory;;dry modification
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:山东科技大学材料科学与工程学院;山东科技大学化学与环境工程学院;
  • 出版日期:2019-07-30
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:山东科技大学校级创新团队(2014TDJH104)~~
  • 语种:中文;
  • 页:CLDB201917009
  • 页数:8
  • CN:17
  • ISSN:50-1078/TB
  • 分类号:73-80
摘要
二氧化硅表面改性是解决其团聚的重要途径,该方法不仅可以提高纳米粒子在水相介质中的分散性,还可改善二氧化硅与有机相的相容性,因此具有重要的理论意义和应用价值。目前,粉体改性的理论依据主要集中于物理吸附理论、化学键理论、配位理论等。常用的纳米二氧化硅改性剂有离子型聚合物(聚乙烯亚胺、马来酰亚胺丙基三甲基氯化铵、聚甲基丙烯酸钠等)、非离子型聚合物(聚氨酯等)以及偶联剂(钛酸酯偶联剂、硅烷偶联剂等),对应的改性方法有分子自组装、嫁接技术、化学沉积技术、干法改性和湿法改性等。聚酰胺胺(PAMAM)树枝状大分子具有结构规整、分子量可控、枝端有较多功能团等独特性质,其反应活性较高,在纳米粒子制备、分子载体、催化剂、重金属离子的分离与提纯等领域得到了广泛研究和运用。通常,以PAMAM大分子改性二氧化硅时多采用间接方式,即首先在二氧化硅粉体表面引入-NH2基团,再利用聚合接枝的方式合成聚酰胺胺分子。但在搅拌和加热的作用下,羟基所键合的硅烷片段可能存在断裂的情况(如-CH2-CH2-键),合成过程中难以避免副反应的发生,合成产物的分子量、分子链的长短都较难控制,且还存在各种复杂因素的影响,导致这种方法效率不高。笔者提出采用PAMAM大分子直接干法改性二氧化硅的方式,实验过程中避免了水分的参与,二氧化硅表面保持较多的活性点,可直接利用改性剂分子PAMAM(中心核原子、酰胺中心、枝端胺基等)与这些活性点的耦合作用形成配体结构,从而达到改性的目的,同时简化改性工艺,降低操作成本。本文首先介绍了PAMAM对二氧化硅的改性方法,接着从重金属离子的吸附和分离、生物技术、在介质和涂料涂层中的分散性以及催化载体四个方面对PAMAM改性二氧化硅的应用进行了着重分析总结,以期为制备性能更优异、更稳定的改性纳米二氧化硅提供参考。
        Surface modification of nano-silica is an important way to solve nanometer powder agglomeration,it can not only improve the dispersibility ofnano-silica in aqueous phase medium,but also improve its compatibility with organic phase. Therefore,surface modification of nano-silica has important theoretical significance and application value.At present,the theoretical basis of powder modification mainly focuses on physical adsorption theory,chemical bond theory and coordination theory,etc. The commonly used nano-silica modifiers are ionic polymers( polyethylenimine,maleimide propyltrimethylammonium chloride,polysodium methacrylate,etc.),non-ionic polymers( polyurethane,etc.),and coupling agents( titanate coupling agent,silane coupling agent,etc.),and the modification methods include molecular self-assembly,grafting,chemical deposition,dry modification and wet modification,etc.Poly( amide-amine)( PAMAM) has been extensively studied and utilized in many fields such as the preparation of nanoparticles,molecular carrier,catalyst and separation and purification of heavy metal ions because of its regular dendrimer structure,controllable molecular weight and multi-functional group,and high reactivity. Most of the modification strategies are conducted indirectly,that is,the-NH_2 group is firstly introduced onto the surface of SiO_2 powder,then PAMAM molecules are synthesized by means of polymerization. However,as silane fragments bonded by hydroxyl may break under the effect of stirring and heating( such as-CH_2-CH_2-),it is difficult to avoid the occurrence of side reactions in the synthesis process,and the molecular weight and length of the molecular chain of the synthetic products are difficult to control. As a result,the efficiency of this method is not high. Our group proposed to adopt PAMAM macromolecular to modify silica directly through dry modification method,which can avoid the participation of moisture,and the surface of silica retain more active points. The aim of modification can be achieved by directly coupling the modifier molecular PAMAM( central nuclear nitrogen atom,amide center,chain terminated amine group,etc.) with these active points on the surface of silicon dioxide to form ligand structure,at the same time,the modification process is simplified and the operating cost is reduced.In this paper,the modification methods of PAMAM for silicon dioxide are introduced firstly,then the application of PAMAM modified silicon dioxide is introduced emphatically from four aspects,including adsorption and separation of heavy metal ions,biotechnology,dispersibility in medium and coatings,and catalytic carriers in order to provide reference for the preparation of modified nano-silica with better performance and stability.
引文
1 Jin T,Li X Y,Sun H Q.International Journal of Quantum Chemistry,2013,113,1213.
    2 Jin T,Li X Y.Chinese Journal of Chemical Physics,2012,25,592.
    3 He X X,Wu X,Wang K M,et al.Biomaterials,2009,30,5601.
    4 He X X,Liu F,Wang K M,et al.Science Bulletin,2006,51(10),1156(in Chinese).何晓晓,刘芳,王柯敏,等.科学通报,2006,51(10),1156.
    5 Moete S J,Sugerman G,Seeman D Z.In:32nd Annual Technical Conference.San Francisco,California,1977,pp.12.
    6 Bourgeat-Lami E,Lang J.Journal of Colloid and Interface Science,1998,197,293.
    7 Oyama H T,Sprycha R,Xie Y,et al.Journal of Colloid and Interface Science,1993,160,298.
    8 Liufu S C,Xiao H N,Li Y P.Journal of Colloid and Interface Science,2005,285,33.
    9 Liufu S C,Xiao H N,Li Y P.Journal of Colloid and Interface Science,2005,281,155.
    10 Zheng S L,Li Y,Luo J J.Non-Metallic Mines,2002,25(7),25(in Chinese).郑水林,李杨,骆剑军.非金属矿,2002,25(7),25.
    11 Nsib F,Ayed N,Chevalier Y.Progress in Organic Coatings,2007,60,267.
    12 Zaman A A,Tsuchiya R,Moudgil B M.Journal of Colloid and Interface Science,2002,256,73.
    13 Nsib F,Ayed N,Chevalier Y.Progress in Organic Coatings,2006,55,303.
    14 Carriere P,Feller J F,Dupuis D,et al.Journal of Colloid and Interface Science,2004,272,218.
    15 Tsubokawa N,Takayama T.Reactive and Functional Polymers,2000,43,341.
    16 Tsubokawa N,Ichioka H,Satoh T,et al.Reactive and Functional Polymers,1998,37,75.
    17 Jin T,Lyu H L.Chinese Journal of Chemical Physics,2013,26,277.
    18 Qu R J,Niu Y Z,Sun C M,et al.Microporous and Mesoporous Materials,2006,97,58.
    19 Price P M,Clark J H,Macquarrie D J.Journal of the Chemical Society,2000,1,101.
    20 Zaitoun M A,Lin C T.The Journal of Physical Chemistry B,1997,101,1857.
    21 Jradi K,Laour D,Daneault C,et al.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,374,33.
    22 Moon J H,Kim J H,Kim K J,et al.Langmuir,1997,13(16),4305.
    23 Jung D H,Park I J,Choi Y K,et al.Langmuir,2002,18,6133.
    24 Ruckenstein E,Yin W.Journal of Polymer Science Part A:Polymer Chemistry,2015,38 (9),1443.
    25 Pu W F,Liu R,Wang K Y,et al.Industrial & Engineering Chemistry Research,2015,54,798.
    26 Fubini B.Health effects of silica,Wiley,New York,1998.
    27 Schrader R,Wissing R,Kubsch H.Zeitschrift für Anorganische und Allgemeine Chemie,1969,365,191.
    28 Hochstrasser G,Antoni J F.Surface Science,1972,32,644.
    29 Murashov V.Journal of Molecular Structure,2003,650,141.
    30 Tarazona-Vasquez F,Balbuena P B.The Journal of Physical Chemistry A,2007,111,945.
    31 Tarazona-Vasquez F,Balbuena P B.The Journal of Physical Chemistry B,2008,112,4172.
    32 Tarazona-Vasquez F,Balbuena P B.The Journal of Physical Chemistry B,2005,109,12480.
    33 Manna A.Imae T,Aoi K,et al.Chemistry of Materials,2001,13,1674.
    34 Davis A P,Ma G,Allen H C.Analytica Chimica Acta,2003,496,117.
    35 Furer N,Stranger R,Moran G,et al.Inorganic Chemistry,1992,31 (13),2860.
    36 Kovalenko S A,Karunakaran V,Kleinermanns K,et al.Journal of the American Chemical Society,2009,131(16),5839.
    37 Niu Y Z,Qu R J,Chen H,et al.Journal of Hazardous Materials,2014,278 (15),267.
    38 Qu R J,Ma X,Wang M H,et al.Journal of Industrial and Engineering Chemistry,2014,20(6),4382.
    39 Niu Y Z,Qu R J,Sun C M,et al.Journal of Hazardous Materials,2013,244-245(15),276.
    40 Qu R J,Sun C M,Ma F,et al.Fuel,2012,92(1),204.
    41 Shahbazi A,Younesi H,Badiei A.Chemical Engineering Journal,2011,168(2),505.
    42 Qu R J,SongX T,Niu Y Z,et al.Fuel,2017,199,91.
    43 Qu R J,Sun C M,Ma F,et al.Fuel,2018,219,205.
    44 Zhang P P,Niu Y Z,Qiao W Z,et al.Journal of Molecular Liquids,2018,263,390.
    45 Jiang Y J,Gao Q M,Yu H G,et al.Microporous and Mesoporous Mate-rials,2007,103,316.
    46 Zhang C T,Su P,Faroog M U,et al.Reactive and Functional Polymers,2010,70,129.
    47 Zhang Z,Yang Y.Chemical Journal of Chinese Universities-Chinese,2006,27(1),47.
    48 Wang S M,Su P,Ding F Y,et al.Journal of Molecular Catalysis B:Enzymatic,2013,89,35.
    49 Tao X,Yang Y J,Liu S,et al.Acta Biomaterialia,2013,9(5),6431.
    50 Yesil-Celiktas O,Pala C,et al.Analytical Biochemistry,2017,519,1.
    51 Chen X,Liu Z N.Journal of Materials Chemistry B,2016,4(25),4382.
    52 Yoshikawa S,Satoha T,Tsubokawa N.Colloids and Surfaces A,1999,153,395.
    53 Esumi K,Nakaie Y,Sakai K,et al.Colloids and Surfaces A,2001,194,7.
    54 Gregor H P,Luttinger L B,Loebl E M.The Journal of Chemical Physics,1955,59,34.
    55 Jin T,Zhang F.Progress in Organic Coatings,2013,72,447.
    56 Jin T.Applied mechanics and materials,Elsevier,Amsterdam,2012.
    57 Beakley L W,Yost S E,Cheng R,et al.Applied Catalysis A:General,2013,292,124.
    58 Auten B J,Lang H,Chandler B D.Applied Catalysis B:Environmental,2008,81,225.
    59 Albiter M A,Morales R,Zaera F.Applied Catalysis A:General,2011,391,386.
    60 Touzani R,Alper H.Journal of Molecular Catalysis A:Chemical,2012,227,197.
    61 Wang Q L,Zhang Y W,Zhou Y M,et al.Journal of Inorganic and Organometallic Polymers,2016,26,702.
    62 Nemanashi M,Noh J H,Meijboom R.Applied Catalysis A:General,2018,550,77.
    63 Wu H,Liu Z,Wang X,et al.Journal of Colloid and Interface Science,2009,302,142.
    64 Dang G F,Shi Y,Fu Z F,et al.Journal of Colloid and Interface Science,2012,369(1),170.
    65 Esumi K,Isono R,Yoshimura T.Langmuir,2004,20(1),237.
    66 Jin T,Kong F M.Surface and Interface Analysis,2015,47,474.
    67 Jin T,Kong F M,Bai R Q.Chemistry Letters,2015,44,943.
    68 Jin T,Easton C D,Yin H,et al.Science and Technology of Advanced Materials,2018,19,381.
    69 Jin T,Han Y,Bai R.Journal of Nanoscience and Nanotechnology,2018,18,4971.
    70 Jin T,Wang Y,Yin H.Journal of Nanoscience and Nanotechnolog,2018,18,4992.
    71 Jin T,Easton C D,Tang Y,et al.Journal of Hazardous Materials,2018,357,100.
    72 Jin T,Kong F,Bai R,et al.Frontiers of Materials Science,2016,10,367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700