用户名: 密码: 验证码:
单颗粒电化学:纳米颗粒及生物分子的分析检测(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Single Particle Impact Electrochemistry:Analyses of Nanoparticles and Biomolecules
  • 作者:张建花 ; 周一歌
  • 英文作者:ZHANG Jian-hua;ZHOU Yi-ge;Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University;
  • 关键词:单颗粒 ; 碰撞 ; 电化学 ; 分析 ; 生物分子
  • 英文关键词:single particles;;impact;;electrochemistry;;analysis;;biomolecules
  • 中文刊名:DHXX
  • 英文刊名:Journal of Electrochemistry
  • 机构:化学生物传感与计量学国家重点实验室湖南大学化学化工学院化学生物学与纳米医学研究所;
  • 出版日期:2019-06-28
  • 出版单位:电化学
  • 年:2019
  • 期:v.25;No.113
  • 基金:supported by the grant from the National Natural Science Foundation of China (No.21804036)
  • 语种:英文;
  • 页:DHXX201903009
  • 页数:12
  • CN:03
  • ISSN:35-1172/O6
  • 分类号:87-98
摘要
单颗粒碰撞电化学近年来已得到迅速发展并在纳米颗粒的性质分析及包括DNA、RNA、蛋白质、酶、细菌、病毒、囊泡类物质等生物体的检测上展示出广阔的前景.在这篇综述中,作者总结了近年来单颗粒碰撞电化学电化学分析中的进展,按分析检测的策略不同分为以下几个部分阐述:纳米粒子或标记纳米粒子的直接电解;包含氧化还原活性分子的软颗粒的直接电解;颗粒的间接电化学行为;区域扩散阻塞效应;电流强度及碰撞频率的改变.
        Single particle impact electrochemistry(SPIEC) has grown rapidly in recent years and shown great promise in the analysis of nanoparticle properties as well as the detection of biomolecules including DNA, RNA, protein, enzyme, bacteria, virus,vesicles and others. This minireview summarizes recent advances in electroanalytical applications of SPIEC according to different analytical methods, i.e., direct electrolysis of nanoparticles or labeled nanoparticles, direct electrolysis of soft particles encapsulated redox molecule, indirect electrochemistry of particles, area and diffusion blocking, and changes in current magnitude and collision frequency.
引文
[1]Bergamaski K,Pinheiro A L N,Teixeira-Neto E,et al.Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts[J].The Journal of Physical Chemistry B,2006,110(39):19271-19279.
    [2]Chen C,Kang Y J,Huo Z Y,et al.Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J].Science,2014,343(6177):1339-1343.
    [3]Chen Q L(陈巧丽),Li H Q(李慧齐),Jiang Y Q(蒋亚琪),et al.Constructions of noble metal nanocrystals with specific crystal facets and high surface area[J].Journal of Electrochemistry(电化学),2018,24(6):602-614.
    [4]Xiu L Y(修陆洋),Yu M Z(于梦舟),Yang P J(杨鹏举),et al.Caging porous Co-N-C nanocomposites in 3D graphene as active and aggregation-resistant electrocatalyst for oxygen reduction reaction[J].Journal of Electrochemistry(电化学),2018,24(6):715-725.
    [5]Streeter I,Baron R,Compton R G.Voltammetry at nanoparticle and microparticle modified electrodes:theory and experiment[J].The Journal of Physical Chemistry C,2007,111(45):17008-17014.
    [6]Korshunov A V,Heyrovsky M.Voltammetry of metallic powder suspensions on mercury electrodes[J].Electroanalysis,2006,18(4):423-426.
    [7]Xiao X Y,Bard A J.Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification[J].Journal of the American Chemical Society,2007,129(31):9610-9612.
    [8]Zhou Y G,Rees N V,Compton R G.The electrochemical detection and characterization of silver nanoparticles in aqueous solution[J].Angewandte Chemie International Edition,50(18):4219-4221.
    [9]Hellberg D,Scholz F,Schauer F,et al.Bursting and spreading of liposomes on the surface of a static mercury drop electrode[J].Electrochemistry Communications,2002,4(4):305-309.
    [10]Banks C E,Rees N V,Compton R G.Sonoelectrochemistry in acoustically emulsified media[J].Journal of Electroanalytical Chemistry,2002,535(1/2):41-47.
    [11]Xiao X Y,Fan F R F,Zhou J P,et al.Current transients in single nanoparticle collision events[J].Journal of the American Chemical Society,2008,130(49):16669-16677.
    [12]Zhou Y G,Rees N V,Pillay J,et al.Gold nanoparticles show electroactivity:counting and sorting nanoparticles upon impact with electrodes[J].Chemical Communications,2011,48(2):224-226.
    [13]Batchelor-McAuley C,Ellison J,Tschulik K,et al.In situ nanoparticle sizing with zeptomole sensitivity[J].Analyst,2015,140(15):5048-5054.
    [14]Rees N V,Zhou Y G,Compton R G.The aggregation of silver nanoparticles in aqueous solution investigated via anodic particle coulometry[J].ChemPhysChem,2011,12(9):1645-1647.
    [15]Haddou B,Rees N V,Compton R G.Nanoparticle-electrode impacts:the oxidation of copper nanoparticles has slow kinetics[J].Physical Chemistry Chemical Physics,2012,14(39):13612-13617.
    [16]Zhou Y G,Haddou B,Rees N V,et al.The charge transfer kinetics of the oxidation of silver and nickel nanoparticles via particle-electrode impact electrochemistry[J].Physical Chemistry Chemical Physics,2012,14(41):14354-14357.
    [17]Zhou Y G,Rees N V,Compton R G.Electrochemistry of nickel nanoparticles is controlled by surface oxide layers[J].Physical Chemistry Chemical Physics,2013,15(3):761-763.
    [18]Stuart E J E,Zhou Y G,Rees N V,et al.Determining unknown concentrations of nanoparticles:the particle-impact electrochemistry of nickel and silver[J].RSC Advances,2012,2(17):6879-6884.
    [19]Rees N V,Zhou Y G,Compton R G.The non-destructive sizing of nanoparticles via particle-electrode collisions:Tag-redox coulometry(TRC)[J].Chemical Physics Letters,2012,525:69-71.
    [20]Little C A,Li X T,Batchelor-McAuley C,et al.Particle-electrode impacts:Evidencing partial versus complete oxidation via variable temperature studies[J].Journal of Electroanalytical Chemistry,2018,823:492-498.
    [21]Little C A,Xie R C,Batchelor-Mcauley C,et al.A quantitative methodology for the study of particle-electrode impacts[J].Physical Chemistry Chemical Physics,2018,20(1):13537-13546.
    [22]Sokolov S V,Tschulik K,Batchelor-McAuley C,et al.Reversible or not?Distinguishing agglomeration and aggregation at the nanoscale[J].Analytical Chemistry,2015,87(19):10033-10039.
    [23]Kwon S J,Fan F R F,Bard A J.Observing iridium oxide(Ir Ox)single nanoparticle collisions at ultramicroelectrodes[J].Journal of the American Chemical Society,2010,132(38):13165-13167.
    [24]Xiao X Y,Pan S L,Jang J S,et al.Single nanoparticle electrocatalysis:effect of monolayers on particle and electrode on electron transfer[J].The Journal of Physical Chemistry C,2009,113(33):14978-14982.
    [25]Chen L F,Tanner E E L,Lin C H,et al.Impact electrochemistry reveals that graphene nanoplatelets catalyse the oxidation of dopamine via adsorption[J].Chemical Science,2018,9(1):152-159.
    [26]Xiang Z P,Deng H Q,Peljo P,et al.Electrochemical dynamics of a single platinum nanoparticle collision event for the hydrogen evolution reaction[J].Angewandte Chemie International Edition,57(13):3464-3468.
    [27]Tschulik K,Haddou B,Omanovic D,et al.Coulometric sizing of nanoparticles:cathodic and anodic impact experiments open two independent routes to electrochemical sizing of Fe3O4nanoparticles[J].Nano Research,2013,6(11):836-841.
    [28]Zampardi G,Thoming J,Naatz H,et al.Electrochemical behavior of single CuO nanoparticles:implications for the assessment of their environmental fate[J].Small,2018,14(32):1801765.
    [29]Zhao L J,Qian R C,Ma W,et al.Electrocatalytic efficiency analysis of catechol molecules for NADH oxidation during nanoparticle collision[J].Analytical Chemistry,2016,88(17):8375-8379.
    [30]Zhou Y G,Rees N V,Compton R G.The electrochemical detection of tagged nanoparticles via particle-electrode collisions:nanoelectroanalysis beyond immobilisation[J].Chemical Communications,2012,48(19):2510-2512.
    [31]Cheng W,Zhou X F,Compton R G.Electrochemical sizing of organic nanoparticles[J].Angewandte Chemie International Edition,2013,52(49):12980-12982.
    [32]Kim B K,Boika A,Kim J,et al.Characterizing emulsions by observation of single droplet collisions attoliter electrochemical reactors[J].Journal of the American Chemical Society,2014,136(13):4849-4852.
    [33]Kim B K,Kim J,Bard A J.Electrochemistry of a single'attoliter emulsion droplet in collisions[J].Journal of the American Chemical Society,2015,137(6):2343-2349.
    [34]Feng A,Cheng W,Compton R G.Measuring the oxygen content of a single oil droplet[J].Chemical Science,2016,7(10):6458-6462.
    [35]Lebègue E,Anderson C M,Dick J E,et al.Electrochemical detection of single phospholipid vesicle collisions at a Pt ultramicroelectrode[J].Langmuir,2015,31(42):11734-11739.
    [36]Dunevall J,Fathali H,Najafinobar N,et al.Characterizing the catecholamine content of single mammalian vesicles by collision-adsorption events at an electrode[J].Journal of the American Chemical Society,2015,137(13):4344-4346.
    [37]Li X C,Majdi S,Dunevall J,et al.Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes[J].Angewandte Chemie International Edition,54(41):11978-11982.
    [38]Cheng W,Compton R G.Investigation of single-drug-encapsulating liposomes using the nano-impact method[J].Angewandte Chemie International Edition,2014,53(50):13928-13930.
    [39]Cheng W,Compton R G.Measuring the content of a single liposome through electrocatalytic nanoimpact“titrations”[J].ChemElectroChem,2016,3(12):2017-2020.
    [40]Kwon S J,Bard A J.DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response[J].Journal of the American Chemical Society,2012,134(26):10777-10779.
    [41]Castaneda A D,Robinson D A,Stevenson K J,et al.Electrocatalytic amplification of DNA-modified nanoparticle collisions via enzymatic digestion[J].Chemical Science,2016,7(10):6450-6457.
    [42]Castan觡eda A D,Brenes N J,Kondajji A,et al.Detection of microRNA by electrocatalytic amplification:a general approach for single-particle biosensing[J].Journal of the American Chemical Society,2017,139(22):7657-7664.
    [43]Li D,Liu J Q,Barrow C J,et al.Protein electrochemistry using graphene-based nano-assembly:an ultrasensitive electrochemical detection of protein molecules via nanoparticle-electrode collisions[J].Chemical Communications,2014,50(60):8197-8200.
    [44]Dick J E,Renault C,Bard A J.Observation of single-protein and DNA macromolecule collisions on ultramicroelectrodes[J].Journal of the American Chemical Society,2015,137(26):8376-8379.
    [45]Sekretaryova A N,Vagin M Y,Turner A P F,et al.Electrocatalytic currents from single enzyme molecules[J].Journal of the American Chemical Society,2016,138(8):2504-2507.
    [46]Lin C H,Sepunaru L,K覿telh觟n E,et al.Electrochemistry of single enzymes:fluctuations of catalase activities[J].The Journal of Physical Chemistry Letters,2018,9(11):2814-2817.
    [47]Jiang L,Santiago I,Foord J.Observation of nanoimpact events of catalase on diamond ultramicroelectrodes by direct electron transfer[J].Chemical Communications,2017,53(59):8332-8335.
    [48]Han L H,Wang W,Nsabimana J,et al.Single molecular catalysis of a redox enzyme on nanoelectrodes[J].Faraday Discussions,2016,193:133-139.
    [49]Sepunaru L,Plowman B J,Sokolov S V,et al.Rapid electrochemical detection of single influenza viruses tagged with silver nanoparticles[J].Chemical Science,2016,7(6):3892-3899.
    [50]Dick J E,Hilterbrand A T,Strawsine L M,et al.Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses[J].Proceedings of the National Academy of Sciences,2016,113(23):6403-6408.
    [51]Dick J E,Hilterbrand A T,Boika A,et al.Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring[J].Proceedings of the National Academy of Sciences,2015,112(17):5303-5308.
    [52]Sepunaru L,Sokolov S V,Holter J,et al.Electrochemical red blood cell counting:one at a time[J].Angewandte Chemie International Edition,55(33):9768-9771.
    [53]Dick J E.Electrochemical detection of single cancer and healthy cell collisions on a microelectrode[J].Chemical Communications,2016,52(72):10906-10909.
    [54]Ho T L T,Hoang N T T,Lee J,et al.Determining mean corpuscular volume and red blood cell count using electrochemical collision events[J].Biosensors and Bioelectronics,2018,110:155-159.
    [55]Peng Y Y,Qian R C,Hafez M E,et al.Stochastic collision nanoelectrochemistry:a review of recent developments[J].ChemElectroChem,2017,4(5):977-985.
    [56]Anderson T J,Zhang B.Single-nanoparticle electrochemistry through immobilization and collision[J].Accounts of Chemical Research,2016,49(11):2625-2631.
    [57]Qiu D F,Wang S,Zheng Y Q,et al.One at a time:counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions[J].Nanotechnology,2013,24(50):505707.
    [58]Stuart E J E,Tschulik K,Omanovic D,et al.Electrochemical detection of commercial silver nanoparticles:identification,sizing and detection in environmental media[J].Nanotechnology,2013,24(44):444002.
    [59]Stuart E J E,Rees N V,Cullen J T,et al.Direct electrochemical detection and sizing of silver nanoparticles in seawater media[J].Nanoscale,2013,5(1):174-177.
    [60]Li X T,Batchelor-McAuley C,Compton R G.Silver nanoparticle detection in real world environments via particle impact electrochemistry[J].ACS Sensors,2019,4(2):464-470.
    [61]Ellison J,Tschulik K,Stuart E J E,et al.Get more out of your data:a new approach to agglomeration and aggregation studies using nanoparticle impact experiments[J].ChemistryOpen,2013,2(2):69-75.
    [62]Toh H S,Jurkschat K,Compton R G.The influence of the capping agent on the oxidation of silver nanoparticles:nano-impacts versus stripping voltammetry[J].Chemistry-A European Journal,2015,21(7):2998-3004.
    [63]Lees J C,Ellison J,Batchelor-McAuley C,et al.Nanoparticle impacts show high-ionic-strength citrate avoids aggregation of silver nanoparticles[J].ChemPhysChem,2013,14(17):3895-3897.
    [64]Dasari R,Walther B,Robinson D A,et al.Influence of the redox indicator reaction on single-nanoparticle collisions at mercury-and bismuth-modified Pt ultramicroelectrodes[J].Langmuir,2013,29(48):15100-15106.
    [65]Holt L R,Plowman B J,Young N P,et al.The electrochemical characterization of single core-shell nanoparticles[J].Angewandte Chemie International Edition,2016,55(1):397-400.
    [66]Plowman B J,Young N P,Batchelor-McAuley C,et al.Nanorod aspect ratios determined by the nano-impact technique[J].Angewandte Chemie International Edition,2016,55(24):7002-7005.
    [67]Saw E N,Grasmik V,Rurainsky C,et al.Electrochemistry at single bimetallic nanoparticles-using nano impacts for sizing and compositional analysis of individual Ag Au alloy nanoparticles[J].Faraday Discussions,2016,193:327-338.
    [68]Lim C S,Tan S M,Sofer Z,et al.Impact electrochemistry of layered transition metal dichalcogenides[J].ACS Nano,2015,9(8):8474-8483.
    [69]Yoo J J,Kim J,Crooks R M.Direct electrochemical detection of individual collisions between magnetic microbead/silver nanoparticle conjugates and a magnetized ultramicroelectrode[J].Chemical Science,2015,6(11):6665-6671.
    [70]Sepunaru L,Tschulik K,Batchelor-McAuley C,et al.Electrochemical detection of single E.coli bacteria labeled with silver nanoparticles[J].Biomaterials Science,2015,3(6):816-820.
    [71]Couto R A S,Chen L,Kuss S,et al.Detection of Escherichia coli bacteria by impact electrochemistry[J].Analyst,2018,143(20):4840-4843.
    [72]Stuart E J E,Tschulik K,Batchelor-McAuley C,et al.Electrochemical observation of single collision events:Fullerene nanoparticles[J].ACS Nano,2014,8(8):7648-7654.
    [73]Toh H S,Compton R G.Electrochemical detection of single micelles through‘nano-impacts’[J].Chemical Science,2015,6(8):5053-5058.
    [74]Dick J E,Renault C,Kim B K,et al.Simultaneous detection of single attoliter droplet collisions by electrochemical and electrogenerated chemiluminescent responses[J].Angewandte Chemie International Edition,2014,53(44):11859-11862.
    [75]Bard A J,Zhou H,Kwon S J.Electrochemistry of single nanoparticles via electrocatalytic amplification[J].Israel Journal of Chemistry,2010,50(3):267-276.
    [76]Stuart E J E,Rees N V,Compton R G.Particle-impact voltammetry:The reduction of hydrogen peroxide at silver nanoparticles impacting a carbon electrode[J].Chemical Physics Letters,2012,531:94-97.
    [77]Kahk J M,Rees N V,Pillay J,et al.Electron transfer kinetics at single nanoparticles[J].Nano Today,2012,7(3):174-179.
    [78]Alligrant T M,Anderson M J,Dasari R,et al.Single nanoparticle collisions at microfluidic microband electrodes:the effect of electrode material and mass transfer[J].Langmuir,2014,30(44):13462-13469.
    [79]Kleijn S E F,Serrano-Bou B,Yanson A I,et al.Influence of hydrazine-induced aggregation on the electrochemical detection of platinum nanoparticles[J].Langmuir,2013,29(6):2054-2064.
    [80]Alligrant T M,Nettleton E G,Crooks R M.Electrochemical detection of individual DNA hybridization events[J].Lab on A Chip,2013,13(3):349-354.
    [81]Cheng W,Compton R G.Quantifying the electrocatalytic turnover of vitamin B12-mediated dehalogenation on single soft nanoparticles[J].Angewandte Chemie International Edition,2016,55(7):2545-2549.
    [82]Quinn B M,van't Hof P G,Lemay S G.Time-resolved electrochemical detection of discrete adsorption events[J].Journal of the American Chemical Society,2004,126(27):8360-8361.
    [83]Boika A,Thorgaard S N,Bard A J.Monitoring the electrophoretic migration and adsorption of single insulating nanoparticles at ultramicroelectrodes[J].The Journal of Physical Chemistry B,2012,117(16):4371-4380.
    [84]Lee J Y,Kim B K,Kang M,et al.Label-free detection of single living bacteria via electrochemical collision event[J].Scientific Reports,2016,6:30022.
    [85]Guanyue G,Dengchao W,Brocenschi R F,et al.Toward the detection and identification of single bacteria by electrochemical,collision technique[J].Analytical Chemistry,2018,90(20):12123-12130.
    [86]Karimi A,Hayat A,Andreescu S.Biomolecular detection at ss DNA-conjugated nanoparticles by nano-impact electrochemistry[J].Biosensors and Bioelectronics,2017,87:501-507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700