用户名: 密码: 验证码:
纳流控-电化学技术在生化分析领域的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Advances in Nanofluidic Electrochemistry for Biochemical Analysis
  • 作者:李仲秋 ; 吴增强 ; 夏兴华
  • 英文作者:LI Zhong-qiu;WU Zeng-qiang;XIA Xing-hua;State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University;
  • 关键词:纳流控 ; 电化学 ; 物质传输 ; 单分子分析 ; 氧化还原循环 ; 双极电极 ; 场效应管
  • 英文关键词:nanofluidics;;electrochemistry;;mass transport;;single-molecule analysis;;redox cycling;;bipolar electrode;;field-effect transistor
  • 中文刊名:DHXX
  • 英文刊名:Journal of Electrochemistry
  • 机构:南京大学生命分析化学国家重点实验室南京大学化学化工学院;
  • 出版日期:2019-06-28
  • 出版单位:电化学
  • 年:2019
  • 期:v.25;No.113
  • 基金:国家重点研发计划项目(No.2017YFA0700500);; 国家自然科学基金项目(No.21635004,No.21775066)资助
  • 语种:中文;
  • 页:DHXX201903001
  • 页数:11
  • CN:03
  • ISSN:35-1172/O6
  • 分类号:4-14
摘要
纳流控作为一个崭新的研究领域正受到越来越多的关注,并且已被成功应用到纳米尺度分离、生化传感、能量转化等诸多领域.纳流控的发展与电化学紧密相连,一方面,电化学可以为纳米孔道中的物质传输特性的研究提供驱动力;另一方面,纳米孔道可以为限域电化学研究提供微环境.纳流控和电化学技术相辅相成,催生了许多单分子、单粒子分析以及纳米流体操控的新理念与新技术.本综述从纳米孔道与电极的结合方式出发,对纳流控-电化学相关研究进行了总结与展望.
        Nanofluidics, as a young research field, has been receiving more and more attentions. It has been successfully applied in various fields including nanoscale separation, biochemical sensing and energy conversion. The development of nanofluidics is closely related to electrochemistry that can provide a driving force for the study of the material transport characteristics in nanopores/nanochannels. On the other hand, nanopores/nanochannels can creat a microenvironment for study of spatially nanoconfined electrochemistry. The combination of nanofluidics and electrochemistry has given rise to many new theories and technologies for single molecule/particle analysis and nanofluid manipulation. Herein, we provide a review of the recent progresses in nanofluidic electrochemistry based on the combination of nanopore and electrode, and finally give a brief outlook on this field.
引文
[1] Xu Y. Nanofluidics:A new arena for materials science[J].Advanced Materials, 2018, 30(3):1-5.
    [2] Xie Q, Xin F, Park H G, et al. Ion transport in graphene nanofluidic channels[J]. Nanoscale, 2016, 8(47):19527-19535.
    [3] Kim S J, Song Y A, Han J. Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization:theory, fabrication, and applications[J]. Chemical Society Reviews, 2010, 39(3):912-922.
    [4] Piruska A, Gong M, Sweedler J V, et al. Nanofluidics in chemical analysis[J]. Chemical Society Reviews, 2010, 39(3):1060-1072.
    [5] Gao H L(高红丽), Zhou K L(周凯琳), Wang C(王琛), et al.Protonization of amino functional groups confined in nanochannels[J]. Journal of Electrochemistry(电化学), 2012, 18(3):229-234.
    [6] Feng Y P, Zhu W W, Guo W, et al. Bioinspired energy conversion in nanofluidics:A paradigm of material evolution[J]. Advanced Materials, 2017, 45(SI):1702773.
    [7] Li R, Fan X, Liu Z, et al. Smart bioinspired nanochannels and their applications in energy-conversion systems[J].Advanced Materials, 2017, 45(SI):1702983.
    [8] Wang L, Boutilier M S H, Kidambi P R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nature Nanotechnology, 2017, 12(6):509-522.
    [9] Liu G P, Jin W Q, Xu N P. Two-dimensional-material membranes:A new family of high-performance separation membranes[J]. Angewandte Chemie International Edition,2016, 55(43):13384-13397.
    [10] Sparreboom W, Van d B A, Eijkel J C T. Principles and applications of nanofluidic transport[J]. Nature Nanotechnology, 2009, 4(11):713-720.
    [11] Daiguji H. Ion transport in nanofluidic channels[J]. Chemical Society Reviews, 2010, 39(3):901-911.
    [12] Schoch R B, Han J, Renaud P. Transport phenomena in nanofluidics[J]. Review of Modern Physics, 2008, 80(3):839-883.
    [13] Duan C, Majumdar A. Anomalous ion transport in2-nm hydrophilic nanochannels[J]. Nature Nanotechnology, 2010, 5(12):848-852.
    [14] Li C Y, Tian Y W, Shao W T, et al. Solution p H regulating mass transport in highly ordered nanopore array electrode[J]. Electrochemistry Communications, 2014, 42:1-5.
    [15] Shan H X(单惠霞), Zeng Z P(曾振平), Ye L X(叶礼贤),et al. Effect of pressure on ion selectivity in biomimetic nanopores with p H-tunable polyelectrolyte brushes[J].Journal of Electrochemistry(电化学), 2017, 23(1):64-71.
    [16] Tsutsui M, Hongo S, He Y H, et al. Single-nanoparticle detection using a low-aspect-ratio pore[J]. ACS Nano, 2012,6(4):3499-3505.
    [17] Heerema S J, Dekker C. Graphene nanodevices for DNA sequencing[J]. Nature Nanotechnology, 2016, 11(2):127-136.
    [18] Min S K, Kim W Y, Cho Y, et al. Fast DNA sequencing with a graphene-based nanochannel device[J]. Nature Nanotechnology, 2011, 6(3):162-165.
    [19] Li C Y, Wu Z Q, Yuan C G, et al. Propagation of concentration polarization affecting ions transport in branching nanochannel array[J]. Analytical Chemistry, 2015, 87(16):8194-8202.
    [20] Li C Y, Ma F X, Wu Z Q, et al. Solution-pH-modulated rectification of ionic current in highly ordered nanochannel arrays patterned with chemical functional groups at designed positions[J]. Advanced Functional Materials,2013, 23(31):3836-3844.
    [21] Bull B S, Schneiderman M A, Brecher G. Platelet counts with the coulter counter[J]. American Journal of Clinical Pathology, 1965, 44(6):678-688.
    [22] DeBlois R W. Counting and sizing of submicron particles by the resistive pulse technique[J]. Review of Scientific Instruments, 1970, 41(7):909-916.
    [23] Chen B, Perry D, Page A, et al. Scanning ion conductance microscopy:Quantitative nanopipette delivery-substrate electrode collection measurements and mapping[J].Analytical Chemistry, 2019, 91(3):2516-2524.
    [24] Jin R, Ye X, Fan J, et al. In situ imaging of photocatalytic activity at titanium dioxide nanotubes using scanning ion conductance microscopy[J]. Analytical Chemistry, 2019,91(4):2605-2609.
    [25] Chen W, Jin B, Hu Y L, et al. Entrapment of protein in nanotubes formed by a nanochannel and ion-channel hybrid structure of anodic alumina[J]. Small, 2012, 8(7):1001-1005.
    [26] Cao C, Long Y T. Biological nanopores:confined spaces for electrochemical single-molecule analysis[J]. Accounts of Chemical Research, 2018, 51(2):331-341.
    [27] Huang S, He J, Chang S, et al. Identifying single bases in a DNA oligomer with electron tunnelling[J]. Nature Nanotechnology, 2010, 5(12):868-873.
    [28] Varongchayakul N, Song J, Meller A, et al. Single-molecule protein sensing in a nanopore:a tutorial[J]. Chemical Society Reviews, 2018, 47:8512-8524.
    [29] Shoji K, Kawano R, White R J. Spatially resolved chemical detection with a nanoneedle-probe-supported biological nanopore[J]. ACS Nano, 2019, 13(2):2606-2614.
    [30] Thakur A K, Movileanu L. Real-time measurement of protein-protein interactions at single-molecule resolution using a biological nanopore[J]. Nature Biotechnology,2019, 37(1):96-101.
    [31] Garaj S, Liu S, Golovchenko J A, et al. Molecule-hugging graphene nanopores[J]. Proceedings of the National Academy of Sciences of the United States of America,2013, 110(30):12192-12196.
    [32] Feng J D, Liu K, Bulushev R D, et al. Identification of single nucleotides in Mo S2nanopores[J]. Nature Nanotechnology, 2015, 10(12):1070-1076.
    [33] Li S J, Li J, Wang K, et al. A nanochannel array-based electrochemical device for quantitative label-free DNA analysis[J]. ACS Nano, 2010, 4(11):6417-6424.
    [34] Gao H L, Li C Y, Ma F X, et al. A nanochannel array based device for determination of the isoelectric point of confined proteins[J]. Physical Chemistry Chemical Physics,2012, 14(26):9460-9467.
    [35] Gao H L, Wang M, Wu Z Q, et al. Morpholino-functionalized nanochannel array for label-free single nucleotide polymorphisms detection[J]. Analytical Chemistry, 2015,87(7):3936-3941.
    [36] Li S J, Wang C, Wu Z Q, et al. Real-time monitoring of mass-transport-related enzymatic reaction kinetics in a nanochannel-array reactor[J]. Chemistry-A European Journal, 2010, 16(33):10186-10194.
    [37] Song J, Xu C H, Huang S Z, et al. Ultrasmall nanopipette:toward continuous monitoring of redox metabolism at subcellular level[J]. Angewandte Chemie International Edition, 2018, 57(40):13226-13230.
    [38] Zhao X P, Wang S S, Younis M R, et al. Asymmetric nanochannel-lonchannel hybrid for ultrasensitive and label-free detection of copper ions in blood[J]. Analytical Chemistry, 2018, 90(1):896-902.
    [39] Jiang Y, Feng Y, Su J, et al. On the origin of ionic rectification in DNA-stuffed nanopores:The breaking and retrieving symmetry[J]. Journal of the American Chemical Society, 2017, 139(51):18739-18746.
    [40] Cao J, Zhao X P, Younis M R, et al. Ultrasensitive capture, detection, and release of circulating tumor cells using a nanochannel-ion channel hybrid coupled with electrochemical detection technique[J]. Analytical Chemistry,2017, 89(20):10957-10964.
    [41] Fu K, Bohn P W. Nanopore electrochemistry:A nexus for molecular control of electron transfer reactions[J].ACS Central Science, 2018, 4(1):20-29.
    [42] Fu K, Han D, Crouch G M, et al. Voltage-gated nanoparticle transport and collisions in attoliter-volume nanopore electrode arrays[J]. Small, 2018, 14(18):1703248.
    [43] Gibson L R, Branagan S P, Bohn P W. Nanofluidics:convective delivery of electroactive species to annular nanoband electrodes embedded in nanocapillary-array membranes[J]. Small, 2013, 9(1):164-164.
    [44] Ma C, Xu W, Wichert W R A, et al. Ion accumulation and migration effects on redox cycling in nanopore electrode arrays at low ionic strength[J]. ACS Nano, 2016, 10(3):3658-3664.
    [45] Branagan S P, Contento N M, Bohn P W. Enhanced mass transport of electroactive species to annular nanoband electrodes embedded in nanocapillary array membranes[J]. Journal of the American Chemical Society, 2012, 134(20):8617-8624.
    [46] Han D, Zaino L P, Fu K, et al. Redox cycling in nanoporeconfined recessed dual-ringelectrode arrays[J]. The Journal of Physical Chemistry C, 2016, 120(37):20634-20641.
    [47] Kwon S R, Fu K Y, Han D, et al. Redox cycling in individually encapsulated attoliter-volume nanopores[J]. ACS Nano, 2018, 12(12):12923-12931.
    [48] Fu K, Han D, Kwon S R, et al. Asymmetric nafion-coated nanopore electrode arrays as redox-cycling-based electrochemical diodes[J]. ACS Nano, 2018, 12(9):9177-9185.
    [49] Steentjes T, Sarkar S, Jonkheijm P, et al. Electron transfer mediated by surface-tethered redox groups in nanofluidic devices[J]. Small, 2017, 13(8):1603268.
    [50] Goluch E D, Wolfrum B, Singh P S, et al. Redox cycling in nanofluidic channels using interdigitated electrodes[J].Analytical and Bioanalytical Chemistry, 2009, 394(2):447-456.
    [51] Kaetelhoen E, Krause K J, Mathwig K, et al. Noise phenomena caused by reversible adsorption in nanoscale electrochemical devices[J]. ACS Nano, 2014, 8(5):4924-4930.
    [52] Wolfrum B, Zevenbergen M, Lemay S. Nanofluidic redox cycling amplification for the selective detection of catechol[J]. Analytical Chemistry, 2008, 80(4):972-977.
    [53] Zevenbergen M A G, Singh P S, Goluch E D, et al. Stochastic sensing of single molecules in a nanofluidic electrochemical device[J]. Nano Letters, 2011, 11(7):2881-2886.
    [54] Kang S, Nieuwenhuis A F, Mathwig K, et al. Electrochemical single-molecule detection in aqueous solution using self-aligned nanogap transducers[J]. ACS Nano,2013, 7(12):10931-10937.
    [55] Rassaei L, Mathwig K, Kang S, et al. Integrated biodetection in a nanofluidic device[J]. ACS Nano, 2014, 8(8):8278-8284.
    [56] Ino K, Matsumoto T, Taira N, et al. Hydrogel electrodeposition based on bipolar electrochemistry[J]. Lab on A Chip, 2018, 18(16):2425-2432.
    [57] Wang D C, Mirkin M V. Electron-transfer gated ion transport in carbon nanopipets[J]. Journal of the American Chemical Society, 2017, 139(34):11654-11657.
    [58] Gao R, Ying Y L, Hu Y X, et al. Wireless bipolar nanopore electrode for single small molecule detection[J]. Analytical Chemistry, 2017, 89(14):7382-7387.
    [59] Ying Y L, Hu Y X, Gao R, et al. Asymmetric nanopore electrode based amplification for electron transfer imaging in live cells[J]. Journal of the American Chemical Society, 2018, 140(16):5385-5392.
    [60] Prakash S, Conlisk A T. Field effect nanofluidics[J]. Lab on A Chip, 2016, 16(20):3855-3865.
    [61] Fuest M, Boone C, Rangharajan K K, et al. A three-state nanofluidic field effect switch[J]. Nano Letters, 2015, 15(4):2365-2371.
    [62] Karnik R, Fan R, Yue M, et al. Electrostatic control of ions and molecules in nanofluidic transistors[J]. Nano Letters, 2005, 5(5):943-948.
    [63] Liu Y, Huber D E, Dutton R W. Limiting and overlimiting conductance in field-effect gated nanopores[J]. Applied Physics Letters, 2010, 96(25):253108.
    [64] Stein D, Kruithof M, Dekker C. Surface-charge-governed ion transport in nanofluidic channels[J]. Physical Review Letters, 2004, 93(3):035901.
    [65] Liu Y F, Yobas L. Slowing DNA translocation in a nanofluidic field-effect transistor[J]. ACS Nano, 2016, 10(4):3985-3994.
    [66] Guan W H, Fan R, Reed M A. Field-effect reconfigurable nanofluidic ionic diodes[J]. Nature Communications, 2011,2:506.
    [67] James T, Kalinin Y V, Chan C C, et al. Voltage-gated ion transport through semiconducting conical nanopores formed by metal nanoparticle-assisted plasma etching[J].Nano Letters, 2012, 12(7):3437-3442.
    [68] Yossifon G, Chang Y C, Chang H C. Rectification, gating voltage, and interchannel communication of nanoslot arrays due to asymmetric entrance space charge polarization[J]. Physical Review Letters, 2009, 103(15):154502.
    [69] Perez-Mitta G, Marmisolle W A, Trautmann C, et al. An all-plastic field-effect nanofluidic diode gated by a conducting polymer layer[J]. Advanced Materials, 2017, 29(28):1700972.
    [70] Zhang Q Q, Kang J X, Xie Z Q, et al. Highly efficient gating of electrically actuated nanochannels for pulsatile drug delivery stemming from a reversible wettability switch[J]. Advanced Materials, 2017, 30(4):1703323.
    [71] Perez-Mitta G, Marmisolle W A, Trautmann C, et al.Nanofluidic diodes with dynamic rectification properties stemming from reversible electrochemical conversions in conducting polymers[J]. Journal of the American Chemical Society, 2015, 137(49):15382-15385.
    [72] Bao B, Hao J R, Bian X J, et al. 3D porous hydrogel/conducting polymer heterogeneous membranes with electro-/pH-modulated ionic rectification[J]. Advanced Materials, 2017, 29(44):1702926.
    [73] Proennecke C, Staude M, Frank R, et al. Electrically switchable monostable actuatoric polymer-based nanovalve arrays with a long-term stability[J]. Nano Letters, 2018, 18(10):6375-6380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700