用户名: 密码: 验证码:
气体射流冲击干燥苹果片的响应面试验及多目标优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response Surface Design and Multi-Objective Optimization of Apple Slices Dried by Air-Impingement
  • 作者:贾梦科 ; 吴忠 ; 赵武奇 ; 卢丹 ; 张清安 ; 张宝善 ; 宋树杰
  • 英文作者:JIA MengKe;WU Zhong;ZHAO WuQi;LU Dan;ZHANG QingAn;ZHANG BaoShan;SONG ShuJie;College of Food Engineering and Nutritional Science, Shaanxi Normal University;
  • 关键词:苹果片 ; 气体射流冲击干燥 ; 品质评价 ; 响应面 ; 综合优化
  • 英文关键词:apple slice;;air-impingement drying;;quality evaluation;;response surface;;comprehensive optimization
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:陕西师范大学食品工程与营养科学学院;
  • 出版日期:2019-08-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:陕西省重点研发计划(2018TSCXL-NY-01-02);; 西安市农业科技创新计划(2017050NC/NY009(3))
  • 语种:中文;
  • 页:ZNYK201915013
  • 页数:11
  • CN:15
  • ISSN:11-1328/S
  • 分类号:148-158
摘要
【目的】探讨气体射流冲击干燥苹果片过程中风温、切片厚度和风速及其交互作用对VC含量、复水比、单位能耗的影响,建立模型并进行多目标优化,以期得到品质好、能耗低的苹果片干燥工艺参数。【方法】以苹果为原料,选取气流温度、切片厚度和气流速度为因素,以苹果片的VC含量、复水比和单位能耗为指标进行三因素的Box-Behnken响应面试验,分析影响各指标的主次因素及各因素间的交互作用,建立VC含量、复水比及单位能耗的二次回归模型。分别用遗传算法、fgoalattain函数法、隶属度综合评价法3种优化方法进行优化,通过比较3种优化方法的结果,得到最佳工艺参数并加以验证。【结果】各因子对VC含量影响的大小次序依次是气流温度>切片厚度>气流速度,气流温度、气流温度与切片厚度及气流温度与气流速度的交互作用极显著,切片厚度作用显著;各因子对复水比影响的大小次序依次是气流温度>气流速度>切片厚度,气流温度、切片厚度及气流速度的影响极显著,切片厚度与气流速度的交互作用影响显著;各因子对单位能耗影响的大小次序依次是切片厚度>气流温度>气流速度,气流温度、切片厚度及气流温度与气流速度的交互作用影响极显著,气流速度及气流温度与切片厚度的交互作用影响显著。建立的VC含量、复水比及单位能耗的回归模型具有统计学意义(P<0.05),可用于对苹果片气体射流冲击干燥指标进行分析和预测;遗传算法优化出苹果片气体射流冲击干燥的最佳工艺参数为:风温63.24℃、切片厚度2.00 mm、风速12.00 m·s-1,该条件下苹果片的VC含量为66.96μg/100 g,复水比为3.83,单位能耗为26.49 kJ·g-1;fgoalattain函数法优化得到的最佳工艺参数为风温71.62℃,切片厚度2.37 mm,风速11.18 m·s-1,其VC含量为64.90μg/100 g,复水比为3.41,单位能耗为25.85 kJ·g-1;隶属度综合评价法优化得到的最佳工艺参数为风温63.57℃,切片厚度2.00 mm,风速12.00 m·s-1,其VC含量为66.94μg/100g,复水比为3.80,单位能耗为26.53 kJ·g-1。以适应度值为评价指标,可以得出遗传算法优化的结果最好。【结论】遗传算法可用于苹果片气体射流冲击干燥工艺中的多目标优化,最佳工艺参数为气流温度63℃,切片厚度2 mm,气流速度12 m·s-1,该参数下VC含量、复水比、单位能耗分别为66.85μg/100 g,3.78,26.59 kJ·g-1,可在苹果片加工中使用。气体射流冲击干燥应用于苹果片干燥具有VC含量高、复水比高、单位能耗低等优点。
        【Objective】 In order to obtain the drying process parameters of apple slices with high quality and low energy consumption, the effects of air temperature, slice thickness, air velocity and their interaction on the vitamin C(VC) content,rehydration ratio and energy consumption were investigated during the air-impingement drying of apple slices. 【Method】 With the air temperature, slice thickness and air velocity as the factors, and the three-factor response surface Box-Behnken response surface design was carried out with the VC content, rehydration ratio and unit energy consumption of apple slices as the response. The factors and their interactions between the various factors were analyzed, and a quadratic regression model of VC content, rehydration ratio and unit energy consumption was established and verified by applying three optimization methods, including genetic algorithm,fgoalattain function method and membership degree comprehensive evaluation method, were applied respectively. 【Result】 The factors' order of influencing on the Vc content was as the follows: Air temperature, slice thickness and air velocity. Regarding the air temperature, both the interactions between the slice thickness and the air velocity were extremely significant, respectively. The factors' influencing rehydration ratio ordered as the air temperature, air velocity and slice thickness, and all these factors had an extremely significant effect; the interactions between slice thickness and air velocity were significant. The orders influencing on the energy consumption were the slice thickness, air temperature and air velocity. And the air temperature, slice thickness and the interactions between air temperature and air velocity were extremely significant, air velocities and the interactions between air temperature and slice thickness were significant. The established regression model of VC content, rehydration ratio and energy consumption was statistically significant(P<0.05), suggesting that the model could be used to analyze and predict air-impingement drying parameters. The optimal drying parameters analyzed by genetic algorithm were of 63.24℃ air temperature, 2.00 mm slice thickness and 12.00 m·s-1 air velocity, respectively. Under these conditions, the VC content, rehydration ratio and energy consumption of apple slices were 66.96 μg/100 g, 3.83 and 26.49 kJ·g-1, respectively; the optimal process parameters obtained by fgoalattain function were as: air temperature 71.62℃, slice thickness 2.37 mm, air velocity 11.18 m·s-1, and VC content was 64.90 μg/100 g,rehydration ratio was 3.41, and unit energy consumption was 25.85 kJ·g-1; the optimal process parameters obtained by the comprehensive evaluation method of membership degree were as: air temperature 63.57℃, slice thickness 2.00 mm, air velocity12.00 m·s-1, and VC content was 66.94 μg/100 g, rehydration ratio was 3.79, unit energy consumption was 26.53 kJ·g-1. With the fitness value as the index, it could be concluded that the genetic algorithm optimized results were the best. 【Conclusion】The genetic algorithm could be used for the multi-objective optimization in air-impingement drying apple slices. The optimum parameters were of 63℃ air temperature, 2 mm slice thickness, and 12 m·s-1 air velocity. With these parameters, the VC content, rehydration ratio and unit energy consumption under this parameter were 66.85 μg/100 g, 3.78, and 26.59 kJ·g~(-1), respectively. In conclusion, the air-impingement technique could be applied in the drying of apple slices with high VC content, high rehydration ratio and low energy consumption.
引文
[1]白杰,曹晓虹,罗瑞明,周玉霞.苹果冷冻干燥工艺优化.食品科学,2005,26(3):169-173.BAI J,CAO X H,LUO R M,ZHOU Y X.The optimization of freeze-drying technology of apple.Food Science,2005,26(3):169-173.(in Chinese)
    [2]李静,宋飞虎,浦宏杰,李臻锋.苹果微波干燥的变温控制方法研究.现代食品科技,2015,31(7):218-224.LI J,SONG F H,PU H J,LI Z F.Microwave drying of apples based on stage-changed high-temperature treatment.Modern Food Technology,2015,31(7):218-224.(in Chinese)
    [3]程晶晶,王军,武冰芪.苹果片的热风干燥特性及数学模型研究.许昌学院学报,2016,35(2):91-99.CHENG J J,WANG J,WU B Q.Study on hot-air drying characteristics of apple slices and their mathematical models.Journal of Xuchang University,2016,35(2):91-99.(in Chinese)
    [4]QIU G,WANG D F,SONG X Y,DENG Y,ZHAO Y Y.Degradation kinetics and antioxidant capacity of anthocyanins in air-impingement jet dried purple potato slices.Food research international(Ottawa,Ont.),2017,105:121-128.
    [5]薛珊,赵武奇,高贵田,吴忠,张建.基于遗传算法的苦瓜片气体射流冲击干燥工艺优化.食品与发酵工业,2017,43(5):180-184.XUE S,ZHAO W Q,GAO G T,WU Z,ZHANG J.Optimization of drying process of sliced bitter melon in air-impinged jet dryer using genetic algorithm.Food and Fermentation Industries,2017,43(5):180-184.(in Chinese)
    [6]MASKAN M.Drying shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying.Journal of Food Engineering,2001,48(2):177-182.
    [7]杜友,郭玉海,崔旭盛,陈晓丽,翟志席.鲜肉苁蓉气体射流冲击干燥工艺.农业工程学报,2010,26(s1):334-337.DU Y,GUO Y H,CUI X S,CHEN X L,ZHAI Z X.Technology of air-impingement drying for fresh cistanche.Transactions of the Chinese Society of Agricultural Engineering,2010,26(s1):334-337.(in Chinese)
    [8]王丽红,高振江,肖红伟,林海,姚雪东.圣女果的气体射流冲击干燥动力学.江苏大学学报:自然科学版,2011,32(5):540-544.WANG L H,GAO Z J,XIAO H W,LIN H,YAO X D.Air impingement drying kinetics of cherry tomato.Journal of Jiangsu University(Natural Science Edition),2011,32(5):540-544.(in Chinese)
    [9]XIAO H W,GAO Z J,LIN H,YANG W X.Air impingement drying characteristics and quality of carrot cubes.Journal of Food Process Engineering,2010,33(5):899-918.
    [10]XIAO H W,LAW C L,SUN D W,GAO Z J.Color change kinetics of American ginseng(Panax quinquefolium)slices during air impingement drying.Drying Technology,2014,32(4):418-427.
    [11]XIAO H W,YAO X D,LIN H,YANG W X,MENG J S,GAO Z J.Effect of SSB(superheated steam blanching)time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices.Journal of Food Process Engineering,2012,35(3):370-390.
    [12]LI W F,WANG M Y,XIAO X L,ZHANG B S,YANG X B.Effects of air-impingement jet drying on drying kinetics,nutrient retention and rehydration characteristics of onion(Allium cepa)slices.International Journal of Food Engineering,2015(3):435-446.
    [13]XIAO H W,PANG C L,WANG L H.Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer.Biosystems Engineering,2010,105(2):233-240.
    [14]高振江.气体射流冲击颗粒物料干燥机理与参数试验研究[D].北京:中国农业大学,2000.GAO Z J.Experimental study on drying mechanism and parameters of gas jet impinging on particulate materials[D].Beijing:China Agricultural University,2000.(in Chinese)
    [15]郑霞,肖红伟,王丽红,张茜,白竣文,谢龙,巨浩宇,高振江.红外联合气体射流冲击方法缩短哈密瓜片的干燥时间.农业工程学报,2014,30(1):262-269.ZHENG X,XIAO H W,WANG L H,ZHANG Q,BAI J W,XIE L,JUH Y,GAO Z J.Shorting drying time of Hami-melon slice using infrared radiation combined with air impingement drying.Transactions of the Chinese Society of Agricultural Engineering,2014,30(1):262-269.(in Chinese)
    [16]孟庆辉.气体射流冲击节能技术在苹果干燥加工中的应用研究[D].西安:陕西师范大学,2009.MENG Q H.study on air-impingement jet drying energy-saving technologies in the process of apple drying[D].Xi’an:Shaanxi Normal University,2009.(in Chinese)
    [17]刘云宏,朱文学,刘建学.地黄真空红外辐射干燥热质传递分析.农业机械学报,2001,42(10):135-139.LIU Y H,ZHU W X,LIU J X.Mass and heat transfer analysis of vacuum infrared radiation drying on Rehmanniae.Transactions of the Chinese Society of Agricultural Machinery,2001,42(10):135-139.(in Chinese)
    [18]吕玉坤,肖卿宇.基于遗传算法的计算机水冷循环泵叶轮优化.电力科学与工程,2016,32(3):67-71.LV Y K,XIAO Q Y.Design optimization of a centrifugal pump impeller for CPU refrigerating using genetic algorithm.Electric Power Science and Engineering,2016,32(3):67-71.(in Chinese)
    [19]李志国,崔周全,张电吉,陈鹏能.磷矿堆场多目标优化配矿模型.武汉工程大学学报,2012,34(10):11-14.LI Z G,CUI Z Q,ZHANG D J,CHEN P N.Multi-objective optimization mathematical model for ore blending in stockyard.Journal of Wuhan University of Technology,2012,34(10):11-14.(in Chinese)
    [20]李军,许树栋,张红超,王露,李朋.多元回归综合优化碳化硅超细粉球团变温干燥工艺.过程工程学报,2017,17(3):600-604.LI J,XU S D,ZHANG H C,WANG L,LI P.Multi-variable regression analysis applied to process optimization of variable temperature drying on SiC ultra-fine powder pellets.Chinese Journal of Process Engineering,2017,17(3):600-604.(in Chinese)
    [21]李文峰,肖旭霖,王玮.紫薯气体射流冲击干燥效率及干燥模型的建立.中国农业科学,2013,46(2):356-366.LI W F,XIAO X L,WANG W.Drying characteristics and model of purple sweet potato in air-impingement jet dryer.Scientia Agricultura Sinica,2013,46(2):356-366.(in Chinese)
    [22]张茜,肖红伟,代建武,杨旭海,娄正,白竣文,高振江.哈密瓜片气体射流冲击干燥特性和干燥模型.农业工程学报,2011,27(s1):382-388.ZHANG X,XIAO H W,DAI J W,YANG X H,LOU Z,BAI J W,GAO Z J.Air impingement drying characteristics and drying model of Hami melon flake.Transactions of the Chinese Society of Agricultural Engineering,2011,27(s1):382-388.(in Chinese)
    [23]邓红,王小娟.不同干燥方法对苹果片品质的影响.食品科技,2007,32(2):84-87.DENG H,WANG X J.Influence of different drying methods to apple slice quality Food Science,2007,32(2):84-87.(in Chinese)
    [24]袁江兰,康旭,陈锦屏.不同预处理方法对山楂干制过程中Vc稳定性的影响.食品工业科技,2002,23(10):16-19.YUAN J L,KANG X,CHEN J P.Effect of different pretreatments on stability of vitamin C in haw during dehydration.Science and Technology of Food Industry,2002,23(10):16-19.(in Chinese)
    [25]黄迪,李文峰,杨兴斌,张忠.气体射流冲击干燥猕猴桃片的复水动力学特性及数学模型.食品与发酵工业,2017,43(5):86-92.HUANG D,LI W F,YANG X B,ZHANG Z.Rehydration characteristics and math model for different air-impingement jet dried kiwifruit slices.Food and Fermentation Industry,2017,43(5):86-92.(in Chinese)
    [26]杨改强,霍丽娟,杨国义,李一菲,钱天伟.利用MATLAB拟合van Genuchten方程参数的研究.土壤,2010,42(2):268-274.YANG G Q,HUO L J,YANG G Y,LI Y F,QIAN T W.Research on fitting van Genuchten equation parameter with MATLAB software.Soils,2010,42(2):268-274.(in Chinese)
    [27]熊德国,鲜学福.模糊综合评价方法的改进.重庆大学学报(自然科学版),2003,26(6):93-95.XIONG D G,XIAN X F.Improvement of fuzzy comprehensive evaluation method.Journal of Chongqing University(Natural Science Edition),2003,26(6):93-95.(in Chinese)
    [28]张小霞,吴巧凤,董旭旦,刘园.猪苓多糖的提取工艺优化及抗氧化活性研究.中华中医药学刊,2016,34(8):2025-2028.ZHANG X X,WU Q F,DONG X D,LIU Y.Optimizing extraction process of polyporus umbellatus polysaccharide and its anti-oxidation activity.Chinese Journal of Traditional Chinese Medicine and Pharmacy,2016,34(8):2025-2028.(in Chinese)
    [29]胡瑾,何东健,任静,刘翔,梁岩,代建国,张海辉.基于遗传算法的番茄幼苗光合作用优化调控模型.农业工程学报,2014,30(17):220-227.HU J,HE D J,REN J,LIU X,LIANG Y,DAI J G,ZHANG H H.Optimal regulation model of tomato seedlings’photosynthesis based on genetic algorithm.Transactions of the Chinese Society of Agricultural Engineering,2014,30(17):220-227.(in Chinese)
    [30]朱益波,张建华,史仲平,毛忠贵.人工神经网络结合遗传算法在焙炒大米过程中的应用.食品与生物技术学报,2004,23(3):51-56.ZHU Y B,ZHANG J H,SHI Z P,MAO Z G.Application of genetic algorithm associated with artificial neural network techniques for optimization of rice roasting process.Journal of Food Science and Biotechnology,2004,23(3):51-56.(in Chinese)
    [31]李冬冬,贾柳君,张海红,沈静波,李子文.基于介电谱技术结合遗传算法的草莓品质预测.食品工业科技,2016,37(23):272-276.LI D D,JIA L J,ZHANG H H,SHEN J B,LI Z W.Strawberry quality prediction based on dielectric spectrum technology combining with genetic algorithm.Science and Technology of Food Industry,2016,37(23):272-276.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700