用户名: 密码: 验证码:
城市湖泊不同水生植被区水体温室气体溶存浓度及其影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dissolved greenhouse gas concentrations and the influencing factors in different vegetation zones of an urban lake
  • 作者:邓焕广 ; 张智博 ; 刘涛 ; 殷山红 ; 董杰 ; 张菊 ; 姚昕
  • 英文作者:DENG Huanguang;ZHANG Zhibo;LIU Tao;YIN Shanhong;DONG Jie;ZHANG Ju;YAO Xin;School of Environment and Planning,Liaocheng University;
  • 关键词:温室气体 ; 溶存浓度 ; 影响因素 ; 水生植被 ; 城市湖泊 ; 铃铛湖
  • 英文关键词:Greenhouse gas;;dissolved concentration;;influencing factor;;aquatic vegetation;;urban lake;;Lake Lingdang
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:聊城大学环境与规划学院;
  • 出版日期:2019-07-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(41401563);; 山东省自然科学基金项目(ZR2014JL028)联合资助
  • 语种:中文;
  • 页:FLKX201904016
  • 页数:9
  • CN:04
  • ISSN:32-1331/P
  • 分类号:167-175
摘要
为了解城市湖泊不同水生植被区水体温室气体的溶存浓度及其影响因素,于2015年4-11月按每月2次的频率采用顶空平衡法对聊城市铃铛湖典型植被区——菹草区、莲藕区和睡莲区表层水中CO_2、CH_4和N_2O的溶存浓度进行监测,计算水中温室气体的饱和度和排放通量,并测定水温(T)、pH、溶解氧(DO)、叶绿素a及营养盐浓度等理化指标,以探究水体环境因子对温室气体溶存浓度的影响.结果表明,铃铛湖各植被区水体温室气体均处于过饱和状态,是大气温室气体的"源";莲藕区CH_4浓度、饱和度和排放通量均显著高于菹草区,而各植被区N_2O和CO_2均无显著性差异;不同植被区湖水中DO、总氮(TN)、总磷(TP)和硝态氮(NO_3~--N)浓度具有显著差异,其中DO、TN和NO_3~--N浓度均表现为菹草区最高,莲藕区最低,而TP浓度则正好相反;各植被区温室气体浓度和水环境参数间的相关分析和多元回归分析的结果表明,水生植物可通过影响水体的理化性质对温室气体的产生和排放产生显著差异影响,在菹草区亚硝态氮(NO_2~--N)、NO_3~--N、T和DO是控制水体温室气体浓度的主要因子;睡莲区为TP和pH;莲藕区则为pH、NO_2~--N和DO.
        Dissolved concentrations of carbon dioxide( CO_2),methane( CH_4) and nitrous oxide( N_2O) in the surface water were measured using the headspace equilibrium method fortnightly from April to November of 2015 in the Potamogeton crispus zone,Nymhaea tetragona zone and Nelumbo nucifera zone of the Lake Lingdang in Liaocheng City. The saturations and emission fluxes of the greenhouse gases were calculated based on the two-layered diffusion model. Moreover,water temperature,pH,dissolved oxygen( DO),chlorophyll-a and the nutrient concentrations in the water body were also measured in order to investigate their influences on the dissolved greenhouse gas concentrations. The results showed that the dissolved concentrations of greenhouse gases in different vegetation zones were all supersaturated,which indicated that Lake Lingdang was a source of atmospheric greenhouse gases. The concentrations,saturations and emission fluxes of CH_4 in N. nucifera zone were significantly higher than those in P. crispus zone but no significant difference between the data of N_2O and CO_2 in different vegetation zones. The concentrations of DO,total nitrogen( TN),total phosphorus( TP) and nitrate( NO3--N) in three vegetation type zones also had significant differences. The average concentrations of DO,TN and NO_3~--N were highest in the P. crispus zone and lowest in the N. nucifera zone,but it was on the contrary for the average TP concentrations. The results of correlation analysis and multivariate regression analysis between the greenhouse gases and the water environment parameters suggested that the aquatic plants could affect the production and emission of greenhouse gases by influencing the physicochemical properties of water body. Greenhouse gas concentrations in lake water were mainly correlated to NO_2~--N,NO_3~--N,water temperature and DO in the P. crispus zone,while mainly correlated to TP and pH in the N. tetragona zone,and pH,NO_2~--N and DO in the N. nucifera zone.
引文
[1] Yang P,He Q,Huang J et al. Fluxes of greenhouse gases at two different aquaculture ponds in the coastal zone of southeaster China. Atmospheric Environment,2015,115:269-277.
    [2] Han Y,Zheng YF,Wu RJ et al. Greenhouse gases emission characteristics of Nanjing typical waters in spring. China Environment Science,2013,33(8):1360-1371.[韩洋,郑友飞,吴荣军等.南京典型水体春季温室气体排放特征研究.中国环境科学,2013,33(8):1360-1371.]
    [3] Xiao QT,Hu ZH,Deng J et al. Effects of antiseptic on the analysis of greenhouse gas concentrations in lake water. Environmental Science,2014,35(1):356-364.[肖启涛,胡正华,Deng J等.杀菌剂对湖泊水体温室气体浓度分析的影响.环境科学,2014,35(1):356-364.]
    [4] Zhang L,Zhang ZH,Gao Y et al. Effect of aquatic plants on emission of gases from eutrophic water. Journal of Ecology and Rural Environment,2014,30(6):736-743.[张力,张振华,高岩等.不同水生植物对富营养化水体释放气体的影响.生态与农村环境学报,2014,30(6):736-743.]
    [5] Xing T,Li JX,Li BB et al. Effects of macrophytes on gaseous nitrogen emissions and nitrogen removal from sediments in a shallow eutrophic lake. Chinese Journal of Ecology,2018,37(3):771-778.[邢涛,李俊雄,李彬彬等.水生植物对草型富营养化湖泊气态氮排放及沉积物氮去除的影响.生态学杂志,2018,37(3):771-778.]
    [6] Yang WJ. The primarily study and tests on annual eutrophicational changes of city lakes in Wuhan[Dissertation]. Wuhan:Huazhong Agricultural University,2010.[杨文静.武汉市内湖富营养化周年变化规律的监测及初步讨论[学位论文].武汉:华中农业大学,2010.]
    [7] Yang WB. Colonization and ecological management of Potamogeton crispus in eutrophic lakes:A case study of Xuanwu Lake in Nanjing[Dissertation]. Nanjing:Nanjing Normal University,2009.[杨文斌.富营养化湖泊菹草的拓殖与生态管理———以南京玄武湖为例[学位论文].南京:南京师范大学,2009.]
    [8] Wen ZD,Song KS,Zhao Y et al. Seasonal variability of greenhouse gas emissions in the urban lakes in Changchun,China. Environmental Science,2016,37(1):102-111.[温志丹,宋开山,赵莹等.长春城市水体夏秋季温室气体排放特征.环境科学,2016,37(1):102-111.]
    [9] Jia L,Pu YN,Yang SJ et al. Analysis of greenhouse gas emission characteristics and their influencing factors in the algae zone of Lake Taihu. Environmental Science,2018,39(5):2316-2329.[贾磊,蒲旖旎,杨诗俊等.太湖藻型湖区CH4、CO2排放特征及其影响因素分析.环境科学,2018,39(5):2316-2329.]
    [10] Yan XC,Zhang ZQ,Ji M et al. Concentration of dissolved greenhouse gas and its influence factors in the summer surface water of eutrophic lake. J Lake Sci,2018,30(5):1420-1428. DOI:10.18307/2018.0523.[闫兴成,张重乾,季铭等.富营养化湖泊夏季表层水体温室气体浓度及其影响因素.湖泊科学,2018,30(5):1420-1428.]
    [11] Oliveira-Junior ES,Tang Y,Berg SJP et al. The impact of water hyacinth(Eichhornia crassipes)on greenhouse gas emission and nutrient mobilization depends on rooting and plant coverage. Aquatic Botany,2018,145:1-9.
    [12] Gao Y,Zhang F,Liu XH et al. Mediation of production and transportation of N2O in eutrophic water with the free-floating aquatic plant,Eichhornia crassipes. Acta Scientiae Circumastantiae,2017,37(3):925-933.[高岩,张芳,刘新红等.漂浮水生植物对富营养化水体中N2O产生及输移过程的调节作用.环境科学学报,2017,37(3):925-933.]
    [13] Liu W,Jiang X,Zhang Q et al. Has submerged vegetation loss altered sediment denitrification,N2O production and denitrifying microbial communities in subtropical lakes? Global Biogeochemical Cycles,2018,32:1195-1207.
    [14] Yu ZJ,Deng HG,Wang DQ et al. Nitrous oxide emissions in the Shanghai river network:implications for the effects of urban sewage and IPCC methodology. Global Change Biology,2013,19:2999-3010.
    [15] Ministry of Environmental Protection of the People's Republic of China,Editorial Board of Water and Wastewater Monitoring and Analysis Methods eds. Water and Wastewater Monitoring and Analysis Methods:4th edition. Beijing:China Environmental Science Press,2002.[国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法:第4版.北京:中国环境科学出版社,2002.]
    [16] Wang D,Chen Z,Sun W et al. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net.Science in China:Series B:Chemistry,2009,52(5):652-661.
    [17] Sun WW,Wang DQ,Chen ZL et al. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net. Science in China:Series B:Chemistry,2009,39(2):165-175.[孙玮玮,王东启,陈振楼等.长江三角洲平原河网水体溶存CH4和N2O浓度及其排放通量.中国科学:B辑:化学,2009,39(2):165-175.]
    [18] Wang JQ,Zheng YF,Wang GX. Diurnal variation of water quality around Potamogeton crispus population. Acta Ecologica Sinica,2013,33(4):1195-1203.[王锦旗,郑有飞,王国祥.菹草种群内外水质日变化.生态学报,2013,33(4):1195-1203.]
    [19] Zhang J,Deng HG,Wu AQ et al. Decomposition of Potamogeton crispus and its effect on the aquatic environment of Dongping. Acta Scientiae Circumstantiae,2013,33(9):2590-2596.[张菊,邓焕广,吴爱琴等.东平湖菹草腐烂分解及其对水环境的影响.环境科学学报,2013,33(9):2590-2596.]
    [20] Deng H,Zhang J,Chen S et al. Metal release/accumulation during the decomposition of Potamogeton crispus in a shallow macrophytic lake. Journal of Environmental Sciences,2016,42(4):71-78.
    [21] Duc NT,Crill P,Bastviken D. Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry,2010,100(1/2/3):185-196.
    [22] Gudasz C,Bastviken D,Steger K et al. Temperature-controlled organic carbon mineralization in lake sediments. Nature,2010,466(7305):478-481.
    [23] Jiang XY,Zhang L,Yao XL. Greenhouse gas flux at reservoirs of Jiangxi Province and its influencing factors. J Lake Sci,2017,29(4):1000-1008. DOI:10.18307/2017.0424.[姜星宇,张路,姚晓龙等.江西省水库温室气体释放及其影响因素分析.湖泊科学,2017,29(4):1000-1008.]
    [24] Song HL,Liu XT,Wen BL. Greenhouse gases fluxes at water-air interface of aquaculture ponds in the Yellow River estuary. Ecology and Environmental Sciences,2017,26(9):1554-1561.[宋红丽,刘兴土,文波龙.黄河三角洲养殖塘水-气界面通量特征.生态环境学报,2017,26(9):1554-1561.]
    [25] Huang WM,Zhu KX,Zhao W et al. Diurnal changes in the greenhouse gases at water-air interface of Xiangxi River in autumn and their influencing factors. Environmental Sciences,2013,34(4):1270-1276.[黄文敏,朱孔贤,赵玮等.香溪河秋季水-气界面温室气体通量日变化观测及影响因素分析.环境科学,2013,34(4):1270-1276.]
    [26] Yang P,Tong C. Emission paths and measurement methods for greenhouse gas fluxes from freshwater ecosystems:a review.Acta Ecologica Sinica,2015,35(20):6868-6880.[杨平,仝川.淡水水生生态系统温室气体排放的主要途径及影响因素研究进展.生态学报,2015,35(20):6868-6880.]
    [27] Chang SQ,Wang DQ,Yu L et al. Greenhouse gas emission characteristics from urban rivers in Shanghai. Research of Environmental Sciences,2015,28(9):1375-1381.[常思琦,王东启,俞琳等.上海城市河流温室气体排放特征及其影响因素.环境科学研究,2015,28(9):1375-1381.]
    [28] Ma Y,Sun L,Liu C et al. A comparison of methane and nitrous oxide emissions from inland mixed-fish and crab aquaculture ponds. Science of the Total Environment,2018,637/638:517-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700