用户名: 密码: 验证码:
An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method
  • 作者:YouShan ; Liu ; Tao ; Xu ; YangHua ; Wang ; JiWen ; Teng ; José ; Badal ; HaiQiang ; Lan
  • 英文作者:YouShan Liu;Tao Xu;YangHua Wang;JiWen Teng;José Badal;HaiQiang Lan;State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences;Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences;Department of Earth Science and Engineering, Imperial College London;Physics of the Earth, Sciences-B, University of Zaragoza;
  • 英文关键词:spectral element method;;source wavefield reconstruction;;single boundary layer;;memory-saving ratio;;adjoint method;;reverse time migration
  • 中文刊名:DQXW
  • 英文刊名:地球与行星物理(英文)
  • 机构:State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences;Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences;Department of Earth Science and Engineering, Imperial College London;Physics of the Earth, Sciences-B, University of Zaragoza;
  • 出版日期:2019-07-15
  • 出版单位:Earth and Planetary Physics
  • 年:2019
  • 期:v.3
  • 基金:financial support for this work contributed by the National Key Research and Development Program of China (grant numbers 2016YFC0600101 and 2016YFC 0600201);; the National Natural Science Foundation of China (grant numbers 41874065, 41604076, 41674102, 41674095, 41522401, 41574082, and 41774097)
  • 语种:英文;
  • 页:DQXW201904007
  • 页数:16
  • CN:04
  • ISSN:10-1502/P
  • 分类号:62-77
摘要
In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must be available simultaneously either for seismic imaging in migration or for gradient calculation in inversion. A feasible way to avoid the excessive storage demand is to reconstruct the source wavefield backward in time by storing the entire history of the wavefield in perfectly matched layers. In this paper, we make full use of the elementwise global property of the Laplace operator of the spectral element method(SEM) and propose an efficient source wavefield reconstruction method at the cost of storing the wavefield history only at single boundary layer nodes. Numerical experiments indicate that the accuracy of the proposed method is identical to that of the conventional method and is independent of the order of the Lagrange polynomials, the element type, and the temporal discretization method. In contrast, the memory-saving ratios of the conventional method versus our method is at least N when using either quadrilateral or hexahedron elements, respectively, where N is the order of the Lagrange polynomials used in the SEM. A higher memorysaving ratio is achieved with triangular elements versus quadrilaterals. The new method is applied to reverse time migration by considering the Marmousi model as a benchmark. Numerical results demonstrate that the method is able to provide the same result as the conventional method but with about 1/25 times lower storage demand. With the proposed wavefield reconstruction method, the storage demand is dramatically reduced; therefore, in-core memory storage is feasible even for large-scale three-dimensional adjoint inversion problems.
        In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must be available simultaneously either for seismic imaging in migration or for gradient calculation in inversion. A feasible way to avoid the excessive storage demand is to reconstruct the source wavefield backward in time by storing the entire history of the wavefield in perfectly matched layers. In this paper, we make full use of the elementwise global property of the Laplace operator of the spectral element method(SEM) and propose an efficient source wavefield reconstruction method at the cost of storing the wavefield history only at single boundary layer nodes. Numerical experiments indicate that the accuracy of the proposed method is identical to that of the conventional method and is independent of the order of the Lagrange polynomials, the element type, and the temporal discretization method. In contrast, the memory-saving ratios of the conventional method versus our method is at least N when using either quadrilateral or hexahedron elements, respectively, where N is the order of the Lagrange polynomials used in the SEM. A higher memorysaving ratio is achieved with triangular elements versus quadrilaterals. The new method is applied to reverse time migration by considering the Marmousi model as a benchmark. Numerical results demonstrate that the method is able to provide the same result as the conventional method but with about 1/25 times lower storage demand. With the proposed wavefield reconstruction method, the storage demand is dramatically reduced; therefore, in-core memory storage is feasible even for large-scale three-dimensional adjoint inversion problems.
引文
Anderson,J.E.,Tan,L.J.,and Wang,D.(2012).Time-reversal checkpointing methods for RTM and FWI.Geophysics,77(4),S93-S103.https://doi.org/10.1190/geo2011-0114.1
    Berenger,J.P.(1994).A perfectly matched layer for the absorption of electromagnetic waves.J.Comput.Phys.,114(2),185-200.https://doi.org/10.1006/jcph.1994.1159
    Bozda?,E.,Trampert,J.,and Tromp,J.(2011).Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements.Geophys.J.Int.,185(2),845-870.https://doi.org/10.1111/j.1365-246X.2011.04970.x
    Bozda?,E.,Peter,D.,Lefebvre,M.,Komatitsch,D.,Tromp,J.,Hill,J.,Podhorszki,N.,and Pugmire,D.(2016).Global adjoint tomography:first-generation model.Geophys.J.Int.,207(3),1739-1766.https://doi.org/10.1093/gji/ggw356
    Brossier,R.,Gholami,Y.,Virieux,J.,and Operto,S.(2010).2D frequency-domain seismic wave modeling in VTI media based on a Hp-adaptive discontinuous Galerkin method.In Proceedings of the 72nd EAGE Conference&Exhibition incorporating SPE EUROPEC.Barcelona,Spain:SEG.
    Capdeville,Y.,and Marigo,J.J.(2007).Second order homogenization of the elastic wave equation for non-periodic layered media.Geophys.J.Int.,170(2),823-838.https://doi.org/10.1111/j.1365-246X.2007.03462.x
    Carcione,J.M.,and Wang,P.J.(1993).A chebyshev collocation method for the wave equation in generalized coordinates.Comput.Fluid Dyn.J.,2(3),269-290.
    Chaljub,E.,Capdeville,Y.,and Vilotte,J.P.(2003).Solving elastodynamics in a fluid-solid heterogeneous sphere:a parallel spectral element approximation on non-conforming grids.J.Comput.Phys.,187(2),457-491.https://doi.org/10.1016/S0021-9991(03)00119-0
    Chaljub,E.,and Valette,B.(2004).Spectral element modelling of threedimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core.Geophys.J.Int.,158(1),131-141.https://doi.org/10.1111/j.1365-246X.2004.02267.x
    Chen,M.,Niu,F.L.,Liu,Q.Y.,Tromp,J.,and Zheng,X.F.(2015).Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia:1.Model construction and comparisons.J.Geophys.Res.,120(3),1762-1786.https://doi.org/10.1002/2014JB011638
    Clapp,R.G.(2009).Reverse time migration with random boundaries.In Proceedings of the 79th Annual International Meeting,SEG,Expanded Abstracts(pp.2809-2813).Houston,Texas:SEG.
    Dablain,M.A.(1986).The application of high-order differencing to the scalar wave equation.Geophysics,51(1),54-66.https://doi.org/10.1190/1.1442040
    Dai,W.,Wang,X.,and Schuster,G.T.(2011).Least-squares migration of multisource data with a deblurring filter.Geophysics,76(5),R135-R146.https://doi.org/10.1190/geo2010-0159.1
    De Basabe,J.D.,and Sen,M.K.(2007).Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equation.Geophysics,72(6),T81-T95.https://doi.org/10.1190/1.2785046
    De Basabe,J.D.,and Sen,M.K.(2010).Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping.Geophys.J.Int.,181(1),577-590.https://doi.org/10.1111/j.1365-246X.2010.04536.x
    Dussaud,E.,Symes,W.W.,Williamson,P.,Lemaistre,L.,Singer,P.,Denel,B.,and Cherrett,A.(2008).Computational strategies for reverse-time migration.In Proceedings of the 78th Annual International Meeting,SEG,Expanded Abstracts(pp.2267-2271).Las Vegas:Society of Exploration Geophysicists.
    Feng,B.,and Wang,H.Z.(2012).Reverse time migration with source wavefield reconstruction strategy.J.Geophys.Eng.,9(1),69-74.https://doi.org/10.1088/1742-2132/9/1/008
    Feng,B.,Zhou,Y.,and Wang,H.Z.(2013).Reply to comment on‘Reverse time migration with source wavefield reconstruction strategy’.J.Eng.Geophys.,10(2),028002.https://doi.org/10.1088/1742-2132/10/2/028002
    Fichtner,A.,Bunge,H.P.,and Igel,H.(2006a).The adjoint method in seismology:I.Theory.Earth Planet.Inter.,157(1-2),86-104.https://doi.org/10.1016/j.pepi.2006.03.016
    Fichtner,A.,Bunge,H.P.,and Igel,H.(2006b).The adjoint method in seismology-II.Applications:traveltimes and sensitivity functionals.Phys.Earth Planet.Inter.,157(1-2),105-123.https://doi.org/10.1016/j.pepi.2006.03.018
    Fichtner,A.,Kennett,B.L.N.,Igel,H.,and Bunge,H.P.(2009).Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods.Geophys.J.Int.,179(3),1703-1725.https://doi.org/10.1111/j.1365-246X.2009.04368.x
    Fletcher,R.P.,and Robertsson,J.O.A.(2011).Time-varying boundary conditions in simulation of seismic wave propagation.Geophysics,76(1),A1-A6.https://doi.org/10.1190/1.3511526
    Gauthier,O.,Virieux,J.,and Tarantola,A.(1986).Two-dimensional nonlinear inversion of seismic waveforms;numerical results.Geophysics,51(7),1387-1403.https://doi.org/10.1190/1.1442188
    Jund,S.,and Salmon,S.(2007).Arbitrary high-order finite element schemes and high-order mass lumping.Int.J.Appl.Math.Comput.Sci.,17(3),375-393.https://doi.org/10.2478/v10006-007-0031-2
    Komatitsch,D.,and Vilotte,J.P.(1998).The spectral element method:an efficient tool to simulate the seismic response of 2D and 3D geological structures.Bull.Seismol.Soc.Am.,88(2),368-392.
    Komatitsch,D.,and Tromp,J.(1999).Introduction to the spectral element method for three-dimensional seismic wave propagation.Geophys.J.Int.,139(3),806-822.https://doi.org/10.1046/j.1365-246x.1999.00967.x
    Komatitsch,D.,and Tromp,J.(2002a).Spectral-element simulations of global seismic wave propagation-I.Validation.Geophys.J.Int.,149(2),390-412.https://doi.org/10.1046/j.1365-246X.2002.01653.x
    Komatitsch,D.,and Tromp,J.(2002b).Spectral-element simulations of global
    seismic wave propagation-Ⅱ.Three-dimensional models,oceans,rotation and self-gravitation.Geophys.J.Int.,150(1),303-318.https://doi.org/10.1046/j.1365-246X.2002.01716.x
    Komatitsch,D.,and Tromp,J.(2003).A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation.Geophys.J.Int.,154(1),146-153.https://doi.org/10.1046/j.1365-246X.2003.01950.x
    Komatitsch,D.,Xie,Z.N.,Bozda?,E.,de Andrade,E.S.,Peter,D.,Liu,Q.Y.,and Tromp,J.(2016).Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion.Geophys.J.Int.,206(3),1467-1478.https://doi.org/10.1093/gji/ggw224
    Lee,E.J.,Chen,P.,Jordan,T.H.,Maechling,P.B.,Denolle,M.A.M.,and Beroza,G.C.(2014).Full-3-D tomography for crustal structure in southern California based on the scattering-integral and the adjoint-wavefield methods.J.Geophys.Res.,119(8),6421-6451.https://doi.org/10.1002/2014JB011346
    Liu,H.W.,Ding,R.W.,Liu,L.,and Liu,H.(2013).Wavefield reconstruction methods for reverse time migration.J.Geophys.Eng.,10(1),015004.https://doi.org/10.1088/1742-2132/10/1/015004
    Liu,Q.Y.,and Tromp,J.(2006).Finite-frequency kernels based on adjoint methods.Bull.Seismol.Soc.Am.,96(6),2383-2397.https://doi.org/10.1785/0120060041
    Liu,Q.Y.,and Tromp,J.(2008).Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods.Geophys.J.Int.,174(1),265-286.https://doi.org/10.1111/j.1365-246X.2008.03798.x
    Liu S.L.,Li X.F.,Wang W.S.,Liu Y.S.,Zhang M.G.,and Zhang H.(2014).A new kind of optimal second-order symplectic scheme for seismic wave simulations.Sci.China:Earth Sci.,57(4),751-758.https://doi.org/10.1007/s11430-013-4805-0
    Liu,S.L.,Li,X.F.,Wang,W.S.,and Zhu,T.(2015).Source wavefield reconstruction using a linear combination of the boundary wavefield in reverse time migration.Geophysics,80(6),S203-S212.https://doi.org/10.1190/geo2015-0109.1
    Liu,S.L.,Yang D.H.,Dong X.P.,Liu Q.C.,Zheng Y.C.(2017a).Element-byelement parallel spectral-element methods for 3-D teleseismic wave modeling.Solid Earth,8(5),969-986.https://doi.org/10.5194/se-8-969-2017
    Liu,S.L.,Yang D.H.,and Ma J.(2017b).A modified symplectic PRK scheme for seismic wave modeling.Comput.Geosci.,99,28-36.https://doi.org/10.1016/j.cageo.2016.11.001
    Liu,X.J.,Liu,Y.K.,Huang,X.G,and Li,P.(2016).Least-squares reverse-time migration with cost-effective computation and memory storage.J.Appl.Geophys.,129,200-208.https://doi.org/10.1016/j.jappgeo.2016.03.009
    Liu,X.J.,Liu,Y.K.,Lu,H.Y.,Hu,H.,and Khan,M.(2017).Prestack correlative least-squares reverse time migration.Geophysics,82(2),S159-S172.https://doi.org/10.1190/geo2016-0416.1
    Liu,Y.S.,Teng,J.W.,Lan,H.Q.,Si,X.,and Ma,X.Y.(2014).A comparative study of finite element and spectral element methods in seismic wavefield modeling.Geophysics,79(2),T91-T104.https://doi.org/10.1190/geo2013-0018.1
    Liu,Y.S.,Teng,J.W.,Xu,T.,Bai,Z.M.,Lan,H.Q.,and Badal,J.(2016).An efficient step-length formula for correlative least-squares reverse time migration.Geophysics,81(4),S221-S238.https://doi.org/10.1190/geo2015-0529.1
    Liu,Y.S.,Teng,J.W.,Xu,T.,and Badal,J.(2017a).Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling.J.Computat.Phys.,336,458-480.https://doi.org/10.1016/j.jcp.2017.01.069
    Liu,Y.S.,Teng,J.W.,Xu,T.,Wang,Y.H.,Liu,Q.Y.,and Badal,J.(2017b).Robust time-domain full waveform inversion with normalized zero-lag crosscorrelation objective function.Geophys.J.Int.,209(1),106-122.https://doi.org/10.1093/gji/ggw485
    Martin,R.,Komatitsch,D.,Gedney S.D.,and Bruthiaux,E.(2010).A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations(ADE-PML).Comput.Model.Eng.Sci.,56(1),17-42.https://doi.org/10.3970/cmes.2010.056.017
    Newmark,N.M.(1959).A method of computation for structural dynamics.J.Eng.Mech.Div.,85(3),67-94.
    Nguyen,B.D.,and McMechan,G.A.(2014).Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration.Geophysics,80(1),S1-S18.https://doi.org/10.1190/geo2014-0014.1
    Peter,D.,Komatitsch,D.,Luo,Y.,Martin,R.,Le Goff,N.,Casarotti,E.,Le Loher,P.,Magnoni,F.,Liu,Q.Y.,…Blitz,C.(2011).Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes.Geophys.J.Int.,186(2),721-739.https://doi.org/10.1111/j.1365-246X.2011.05044.x
    Plessix,R.E.(2006).A review of the adjoint-state method for computing the gradient of a functional with geophysical applications.Geophys.J.Int.,167(2),495-503.https://doi.org/10.1111/j.1365-246X.2006.02978.x
    Plessix,R.é.(2009).Three-dimensional frequency-domain full-waveform inversion with an iterative solver.Geophysics,74(6),WCC149-WCC157.https://doi.org/10.1190/1.3211198
    Pratt,R.G.,and Shipp,R.M.(1999).Seismic waveform inversion in the frequency domain;part 2;fault delineation in sediments using crosshole data.Geophysics,64(3),902-914.https://doi.org/10.1190/1.1444598
    Shen,X.K.,and Clapp,R.G.(2015).Random boundary condition for memoryefficient waveform inversion gradient computation.Geophysics,80(6),R351-R359.https://doi.org/10.1190/geo2014-0542.1
    Shi,Y.,and Wang,Y.H.(2016).Reverse time migration of 3D vertical seismic profile data.Geophysics,81(1),S31-S38.https://doi.org/10.1190/geo2015-0277.1
    Sun,W.J.,and Fu,L.Y.(2013).Two effective approaches to reduce data storage in reverse time migration.Comput.Geosci.,56,69-75.https://doi.org/10.1016/j.cageo.2013.03.013
    Symes,W.W.(2007).Reverse time migration with optimal checkpointing.Geophysics,72(5),SM213-SM221.https://doi.org/10.1190/1.2742686
    Tan,S.R.,and Huang,L.J.(2014).Reducing the computer memory requirement for 3D reverse-time migration with a boundary-wavefield extrapolation method.Geophysics,79(5),S185-S194.https://doi.org/10.1190/geo2014-0075.1
    Tang,C.,and Wang,D.(2012).Reverse time migration with source wavefield reconstruction in target imaging region.In Proceedings of the 74th EAGEConference and Exhibition incorporating EUROPEC 2012(pp.3716-3720).Copenhagen,Denmark:SEG.
    Tang,Y.X.(2009).Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian.Geophysics,74(6),WCA95-WCA107.https://doi.org/10.1190/1.3204768
    Tape,C.,Liu,Q.Y.,and Tromp,J.(2007).Finite-frequency tomography using adjoint methods-methodology and examples using membrane surface waves.Geophys.J.Int.,168(3),1105-1129.https://doi.org/10.1111/j.1365-246X.2006.03191.x
    Tape,C.,Liu,Q.Y.,Maggi,A.,and Tromp,J.(2010).Seismic tomography of the southern California crust based on spectral-element and adjoint methods.Geophys.J.Int.,180(1),433-462.https://doi.org/10.1111/j.1365-246X.2009.04429.x
    Tarantola,A.(1984).Inversion of seismic reflection data in the acoustic approximation.Geophysics,49(8),1259-1266.https://doi.org/10.1190/1.1441754
    Tromp,J.,Tape,C.,and Liu,Q.Y.(2005).Seismic tomography,adjoint methods,time reversal and banana-doughnut kernels.Geophys.J.Int.,160(1),195-216.https://doi.org/10.1111/j.1365-246X.2004.02453.x
    Tromp,J.,Komatitsch,D.,and Liu,Q.Y.(2008).Spectral-element and adjoint methods in seismology.Commun.Comput.Phys.,3(1),1-32.
    Vasmel,M.,and Robertsson,J.O.A.(2016).Exact wavefield reconstruction on finite-difference grids with minimal memory requirements.Geophysics,81(6),T303-T309.https://doi.org/10.1190/geo2016-0060.1
    Virieux,J.,and Operto,S.(2009).An overview of full-waveform inversion in exploration geophysics.Geophysics,74(6),WCC1-WCC26.https://doi.org/10.1190/1.3238367
    Whitmore,N.D.,and Lines,L.R.(1986).Vertical seismic profiling depth migration of a salt dome flank.Geophysics,51(5),1087-1109.https://doi.org/10.1190/1.1442164
    Wong,M.,Biondi,B.L.,and Ronen,S.(2015).Imaging with primaries and freesurface multiples by joint least-squares reverse time migration.Geophysics,80(6),S223-S235.https://doi.org/10.1190/geo2015-0093.1
    Yang,P.L.,Brossier,R.,Métivier,L.,and Virieux,J.(2016a).Wavefield reconstruction in attenuating media:a checkpointing-assisted reverseforward simulation method.Geophysics,81(6),R349-R362.https://doi.org/10.1190/geo2016-0082.1
    Yang,P.L.,Brossier,R.,and Virieux,J.(2016b).Wavefield reconstruction by interpolating significantly decimated boundaries.Geophysics,81(5),T197-T209.https://doi.org/10.1190/geo2015-0711.1
    Zhu,H.J.,Bozda?,E.,and Tromp,J.(2015).Seismic structure of the European upper mantle based on adjoint tomography.Geophys.J.Int.,201(1),18-52.https://doi.org/10.1093/gji/ggu492

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700