用户名: 密码: 验证码:
基于激光腔增强技术的前向散射能见度仪校准方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Calibration Method for Forward Scatter Visibility Meter based on Laser Cavity Enhanced Technique
  • 作者:张建锋 ; 孙强 ; 褚进华 ; 陈哲敏 ; 胡朋兵 ; 陈宁 ; 张辉
  • 英文作者:ZHANG Jianfeng;PAN Sunqiang;CHU Jinhua;CHEN Zhemin;Hu Pengbing;CHEN Ning;ZHANG Hui;Zhejiang Institute of Metrology;CMA Shanghai Material Management office;
  • 关键词:能见度仪校准 ; 激光腔增强 ; 气溶胶 ; 消光系数 ; 气象光学视程
  • 英文关键词:visibility calibration;;laser cavity enhanced;;aerosol;;extinction;;visibility;;MOR
  • 中文刊名:GSSX
  • 英文刊名:The Journal of Light Scattering
  • 机构:浙江省计量科学研究院长度与光学计量研究所;中国气象局上海物资管理处;
  • 出版日期:2019-06-15
  • 出版单位:光散射学报
  • 年:2019
  • 期:v.31;No.106
  • 基金:浙江省质量技术监督局科研项目(20170213);; 国家自然科学基金青年科学基金项目(41605101,41805018);; 国家重点研发计划项目(2016YFF0103202、2016YFF0103204、2016YFF0200305、2017YFF0205501);; 国家质检总局项目(2016QK173)
  • 语种:中文;
  • 页:GSSX201902008
  • 页数:6
  • CN:02
  • ISSN:51-1395/O4
  • 分类号:63-68
摘要
为了填补前向散射能见度仪校准的空白,利用激光腔增强技术,搭建了一套开放式能见度校准系统,通过在能见度模拟舱中用气溶胶发生器产生单分散硬脂酸气溶胶颗粒产生模拟能见度环境,实现前向散射能见度仪的校准。与前向散射能见度仪、透射式能见度仪分别在小型模拟舱((长2m×宽1m×高1m))和大型模拟舱(长20m×宽3.5m×高3m)中开展了比对实验,实验结果表明,在100~2000 m能见度范围内,与透射式能见度仪的相对误差在5%以内,与前向散射能见度仪的相对误差在10%以内,均具有较好的一致性。这套系统可以用在较小的小型能见度模拟舱中,为前向散射能见度仪的实验室校准提供可行的技术手段。
        In order to make up the shortage of calibration of visibility meter,built a suit of open path visibility calibration system device based on laser cavity enhanced technique.The calibration of the forward scattering visibility meter is achieved by simulating the visibility environment in the visibility simulation chamber,with monodispersed stearic acid particulate matters generated by aerosol generator.Contrast tests were taken with forward-scattered visibility meter in a small simulation chamber(length 2 m×width 1 m×height 1 m)and transmission meter in large simulation chamber(length 20 m×width 2.5 m×height 3 m).The results shows,within the visibility of 100~2000 m,the relative error with transmission visibility meter is less than 5%,and the relative error with forward-scattered visibility meter is less than 10%,and both of them show a good consistency.This system can be used in a smaller visibility simulation chamber,and provide a feasible technique method for laboratory calibration of forward-scattered visility meter.
引文
[1] 王胜杰,褚进华,解淑艳.能见度仪检测实验室建设的探讨[J].环境监测与预警,2015,21(6):67-71.(WANG Shengjie,CHU Jinhua,Xie Shuyan.Discussion on examining the laboratory construction using a visibility meter[J].Environmental Monitoring and Forewarning,2015,21(6):67-71.)
    [2] 方海涛,窦炜明,李国庆,等.气象视程观测环境模拟装置[P].中国:CN 204964793 U,2016.01.13.(FANG Haitao,DOU Weiming,LI Guoqing,et al.Meteorological optical range observation environment simulation device [P].China:CN 204964793 U,2016.01.13.)
    [3] 张建锋,潘孙强,陈哲敏,等.基于光声光谱和腔衰荡光谱的气溶胶光学特性测量研究[J].光电子.激光,2017,2(2):197-201.(ZhANG Jianfeng,PAN Sunqiang,CHEN Zhemin,et al.Aerosol Optical Property Measurement based on Photoacoustic Spectroscopy and Cavity Ring-down Spectroscopy[J].Journal of Optoelectronics·Laser,2017,2(2):197-201.)
    [4] THOMPSON J E,SMITH B W,WINEFORDNER J D.Monitoring Atmospheric Particulate Matter throughCavity Ring-Down Spectroscopy[J].Analytical Chemistry,2002,74(9):1962-1967.
    [5] 徐学哲,赵卫雄,董美丽,等.腔增强/衰荡光谱应用于气溶胶消光检测研究进展[J].量子电子学报,2014,7(4):477-488.(XU Xue-zhe,ZHAO Wei-xiong,DONG Mei-li,et al.Monitoring aerosol extinction with cavity enhanced/ring-down:A brief review[J].Chinese Journal of Quantum electronics,2014,7(4):477-488.)
    [6] JOSHUA B.PAUL,LARRY LAPSON,JAMES G.Anderson.Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment[J].Applied Optics,2001,27(40):4904-4910.
    [7] 赵辉,王贵师,蔡廷栋,等.利用离轴腔增强吸收光谱技术探测实际大气中的二氧化碳[J].光谱学与光谱分析,2012,1(1):41-45.ZHAO Hui,WANG Guishi,CAI Tingdong,et al.Off-axis cavity enhanced absorption spectroscopy detection techniques for the measurement of carbon dioxide[J].Spectroscopy and spectral analysi,2012,1(1):41-45.
    [8] 龙精明.离轴入射腔增强吸收光谱气体探测系统研究[D].浙江:浙江师范大学,2010.(Long Jingmin.Research on gaseous detection system of off-axis cavity enhanced absorption spectroscopy[D].Zhejiang Province:Zhejiang normal university,2010.)
    [9] 凌六一,秦敏,谢品.基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2[J].物理学报.2012,61(14):140703.(Ling Liuyi,Qin Min,Xie Pinhua.Incoherent broadband cavity enhanced absorption spectroscopy for measurements of HONO and NO2 with a LED opticl source[J].Acta Physsin.2012,61(14):140703.)
    [10] 陈霄,隋青美,苗飞,等.高灵敏度腔增强吸收式乙炔气体检测系统[J].光学精密工程.2012,20(1):9-15.(CHEN Xiao,SUI Qingmei,MIAO Fei,et al.High sensitivity acetylene detection system based on cavity enhanced absorption technique[J].Optics and precision engineering.2012,20(1):9-15.)
    [11] 李留成,多丽萍,王元虎,等.用于化学激光器的强增腔吸收光谱测量[J].红外与激光工程.2017,46(2):0239003-1-0239003-5.(Li Liucheng,Duo Liping,Wang Yuanhu et al.Cavity enhanced absorption spectroscopy measurements for chemical lasers[J].Infrared and laser engineering.2017,46(2):0239003-1-0239003-5.)
    [12] ZHAO WEIXIONG,DONG MEILI,CHEN WEIDONG,et al.Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm[J].Analytical Chemistry.2013,85:2260-2268.
    [13] PALDUS B A,KACHANOV A A.An historical overview of cavity-enhanced methods[J].Canadian Journal of Physics,2005,83(10):975-999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700