用户名: 密码: 验证码:
原地生成宇宙成因核素测年技术思考(二):持续抬升区单样品直接计算抬升速率方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Consideration on the In Situ Produced Cosmogenic Nuclide Dating Technique(2):Direct Calculation of Surface Uplift Rates by A Single Sample
  • 作者:黄费新 ; 李岩 ; 李广伟 ; 董国成 ; 程杨 ; 赵亮亮
  • 英文作者:HUANG Feixin;LI Yan;LI Guangwei;DONG Guocheng;CHENG Yang;ZHAO Liangliang;Research Institute of Mineral Resources,China Metallurgical Geology Bureau;School of Geosciences and Engineering,Nanjing University;Institute of Geoenvironments,Chinese Academy of Sciences;Xi'an Accelerated Mass Spectrometry Center;
  • 关键词:抬升区 ; 原地生成宇宙成因核素 ; 抬升速率 ; 侵蚀速率
  • 英文关键词:uplift areas;;in situ cosmogenic nuclide;;erosion rate;;uplift rate
  • 中文刊名:DZKT
  • 英文刊名:Geology and Exploration
  • 机构:中国冶金地质总局矿产资源研究院;南京大学地球科学与工程学院;中国科学院地球环境研究所;西安加速质谱中心;
  • 出版日期:2019-05-15
  • 出版单位:地质与勘探
  • 年:2019
  • 期:v.55;No.484
  • 基金:国家自然科学基金面上项目(编号:41873064、41176166)资助
  • 语种:中文;
  • 页:DZKT201903013
  • 页数:8
  • CN:03
  • ISSN:11-2043/P
  • 分类号:148-155
摘要
原地生成宇宙成因核素测年技术在计算暴露年龄和侵蚀速率时,一直默认样品所在位置不随时间发生高程变化,从而核素生成速率不因高程变化而改变。在构造稳定区,这样的假设是合理的。在构造活动区,往往会因构造运动,地表样品高程发生改变;大冰盖地区(如南极)的冰川消融或加厚也会引起地壳均衡反弹,从而导致样品高程变化;而核素的生成速率将随高程变化而改变。本文对持续抬升情况下,地表样品中宇宙成因核素浓度与生成速率加速率间的计算关系进行了三种方法的数学推导,并提出如何利用单块样品中两种宇宙成因核素(以10Be和26Al为例)浓度计算地表抬升速率,最后指出以往利用宇宙成因核素方法对构造活动区的侵蚀速率的计算存在高估。本文首次提出利用地表在接近稳态侵蚀状态下的单块样品的两种宇宙成因核素直接计算地表持续抬升速率的方法,从而将原地生成宇宙成因核素方法和构造运动学研究直接联系起来。
        In situ cosmogenic isotopes( e. g.,10 Be,26 Al,and36 Cl,21 Ne) have been widely applied to research of geomorphologic evolution to constrain the exposure and erosion history of the earth surface. Generally,the elevation of samples is assumed invariable,thus the production rate of cosmogenic nuclides does not change with the elevation. This assumption is reasonable in tectonically stable areas. Whereas,production rates of cosmogenic nuclides can vary with elevation in tectonically active regions. Besides,in areas with great ice sheet( e. g.,Antarctica),balanced rebound in the earth's crust caused by melting or thickening glaciers can also make the elevation of samples change,leading to variation of the production rate of cosmogenic nuclides. To address this issue,we derive the relationship between nuclide concentration and the mean annual increment of radiogenic nuclide production rate by three mathematical methods and explore how to calculate the uplift rate using a pair of radio-nuclides data( e. g.,10 Be and26 Al). Furthermore,we point out the existence of an overestimate of the erosion rate calculated by cosmogenic isotopes in uplift areas. It is the first time to present a method using a pair of cosmogenic nuclides of a single rock sample to calculate the earth surface uplift rate under steady-state erosion directly,thus linking the cosmogenic nuclide method with tectonic motion research.
引文
Altmaier M,Herpers U,Delisle G,Merchel S,Ott U.2010.Glaciation historyof Queen Maud Land(Antarctica)reconstructed from in-situ produced cosmogenic10Be,26Al and21Ne[J].Polar Science,4(1):42-61.
    Balco G.2011.Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology,1990-2010[J].Quaternary Science Reviews,30(1-2):3-27.
    Beer J,Mc Cracken K,Steiger R von.2012.Cosmogenic radionuclideTheory and applications in the terrestrial and space environments[M].Springer Heidelberg Dordrecht London New York:Springer Press:426.
    Blanckenburg F V.2005.The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment[J].Earth&Planetary Science Letters,237(3-4):462-479.
    Blard P H,Lupker M,Rousseau M.2019.Paired-cosmogenic nuclide paleoaltimetry[J].Earth and Planetary Science Letters,515:271-282.
    Borchers B,Marreto S,Balco G,Caffee M,Geohring B,Lifton N,Nishiizumi K,Phillips F,Schaefer J,Stone J.2016.Geological calibration of spallation production rates in the CRONUS-Earth project[J].Quaternary Geochronology,31:188-198.
    Cowie P A,Phillips R J,Roberts G P,Mc Caffrey K,Zijerveld L J J,Gregory L C,Walker J F,Wedmore L N J,Dunai T J,Binnie S A.2017.Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults[J].Scientific Reports,7:44858.
    Darryl E G,Nathaniel A L,Jane K W.2013.A cosmic trip:25 years of cosmogenic nuclides in geology[J].Bulletin of the Geological Society of America,125(9-10):1379-1402.
    Dunai T J.2000.Scaling factors for production rates of in situ produced cosmogenic nuclides:A critical reevatuation[J].Earth and Planetary Science Letters,176:157-169.
    Dunai T J.2010.Cosmogenic nuclides-Principles,concepts and applications in the Earth surface Sciences[M].Cambridge,UK:Cambridge University Press:187.
    Granger D E,Kirchner J W,Finkel R.1996.Spatially averaged longterm erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment[J].Journal of Geology,104(3):249-257.
    Gosse J C,Phillips F M.2001.Terrestrial in situ cosmogenic nuclieds:Theory and application[J].Quaternary Science Reviews,20:1475-1560.
    Han Fei,Gu Zhaoyan,Yin Gongming,David Fink,Wang Duo.2016.Cosmogenic nuclides26Al/10Be burial dating of Yellow River gravel terraces around Yemingshan Hill,Ningxia,China[J].Quaternary Sciences,36(5):1216-1223(in Chinese with English abstract).
    Heimsath A M,Chappell J,Dietrich W E,Nishiizumi K,Finkel R C.2001.Late Quaternary erosion in southeastern Australia:A field example using cosmogenic nuclides[J].Quaternary International,83(1):169-185.
    Huang Feixin,Liu Xiaohan,Kong Ping,Fink D,Ju Yitai,Fang Aimin,Yu Liangjun,Li Xiaoli,Na Changguang.2008.Fluctuation history of the interior East Antarctic Ice Sheet since mid-Pliocene[J].Arctic Science,20(2):197-203.
    Huang Feixin,Liu Xiaohan,Kong Ping,Ju Yitai,Fang Aimin,Li Xiaoli,Na Changguang.2004.Bedrock exposuer ages in the Grove Mountains,interior east Antarctica[J].Chinese Journal of Polar Research,16(01):22-28(in Chinese with English abstract).
    Huang Feixin,Li Yan,Cheng Yang,2019.Consideration on in situ produced cosmognic nuclide dating techniques(1):εsovled by steadystate erosion equation is the current surface erosion rate[J].Geology and Exploration,55(1):145-151(in Chinese with English abstract).
    Kober F,Ivy-Ochs S,Schlunegger F,Baur H,Kubik P W,Wieler R.2007.Denudation rates and a topography-driven rainfall threshold in northern Chile:Multiple cosmogenic nuclide data and sediment yield budgets[J].Geomorphology,83(1):97-120.
    Kong Ping,Huang Feixin,Liu Xiaohan,Fink D,Ding Lin,Lai Qingzhou.2010.Late Miocene ice sheet elevation in the Grove Mountains,East Antarctica,inferred from cosmogenic21Ne-10Be-26Al[J].Global Planetary Change,72(1):50-54.
    Kong Ping.2002.Application of cosmogentic nuclides in the earth science[J].Earth Science Frontiers,9(3):41-48(in Chinese with English abstract).
    Kong Ping,Na Chunguang,Fink D,Ding Ling,Huang Feixin.2007.Erosion in northwest Tibet from in-situ produced cosmogenic10Be and26Al in bedrock[J].Earth Surface Processes and Landforms,32:116-125.
    Lal D.1991.Cosmic ray labeling of erosion surfaces:In situ nuclide production rates and erosion models[J].Earth Planetary Science Letters,104(91):424-439.
    Li Guangwei,Liu Xiaohan,Huang Feixin,Kong Ping,Fink David,Wei Lijie,Fang Aimin.2009.Preliminary study on the erratic exposure ages of Grove Mountains,East Antarctica[J].Chinese Journal of Polar Research,21(04):265-271(in Chinese with English abstract).
    Owen L A,Caffee M W,Bovard K R,Finkel R C,Sharma M C.2006.Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen:Ladakh Range,northern India[J].Geological Society of America Bulletin,118(3-4):383-392.
    Schaller M,Blanckenburg F V,Hovius N,Kubik P W.2001.Largescale erosion rates from in situ-produced cosmogenic nuclides in European river sediments[J].Earth&Planetary Science Letters,188(3):441-458.
    Stone J O.2000.Air pressure and cosmogenic isotope production[J].Journal of Geophysical Research,105(B10):23753-23759.
    Tesson J,Pace B,Benedetti L,Visini F,Rocioli M D,Arnold M,Auma5tre G,Bourlès D L,Keddadouche K.2016.Seismic slip history of the Pizzalto fault(central Apennines,Italy)using in situ-produced36Cl cosmic ray exposure dating and rare earth element concentrations[J].Journal of Geophysical Research Solid Earth,121(3):1983-2003.
    Thompson Jobe J A,Li T,Bookhagen B,Chen J,Burbank D.2018.Dating growth strata and basin fill by combining26Al/10Be burial dating and magnetostratigraphy:Constraining active deformation in the Pamir-Tian Shan convergence zone,NW China[J].Lithosphere,10(6):806-828.
    Xiao Xuchang,Li Tingdong.2000.Tectonic evolution and uplift of the Qinghai-Xizang(Tibet)Plateau[M].Guangzhou:Guangdong Science and Technoloyg Press:225-231(in Chinese).
    Zhang Jinyu,Liu Jing,Wang Heng,Shi Xuhua,Yao Wenjing,Xu Jing,Xu Xinyue.2018.Cosmogentic nuclides exposure dating for bedrock faul scarp:Reconstructing the paleoerathquake sequence[J].Seismology and Geology,40(5):1149-1169(in Chinese with English abstract).
    韩非,顾兆炎,尹功明,David F,王躲.2016.宇宙成因核素26Al/10Be埋藏测年法在宁夏沙坡头黄河砾石阶地年代研究中的应用[J].第四纪研究,36(5):1216-1223.
    黄费新,刘小汉,孔屏,琚宜太,方爱民,李潇丽,那春光.2004.东南极内陆格罗夫山地区基岩暴露年龄研究[J].极地研究,16(01):22-28.
    黄费新,李岩,程杨.2019.原地生成宇宙成因核素测年技术思考(一):稳态侵蚀等式解出的ε是当前地表侵蚀速率[J].地质与勘探,55(1):145-151.
    孔屏.2002.宇宙成因核素在地球科学中的应用[J].地学前缘,9(3):41-48.
    李广伟,刘小汉,黄费新,孔屏,Fink D,韦利杰,方爱民.2009.东南极格罗夫山萨哈罗夫岭漂砾暴露年龄初探[J].极地研究,21(04):265-271.
    肖序常,李廷栋.2000.青藏高原的构造演化与隆升机制[M].广州:广东科技出版社:225-231.
    张金玉,刘静,王恒,石许华,姚文婧,徐晶,徐心悦.2018.基岩断面宇宙成因核素暴露定年:重建正断层古地震序列[J].地震地质,40(5):1149-1169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700