用户名: 密码: 验证码:
勘查地球化学数据挖掘与弱异常识别
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Exploration geochemical data mining and weak geochemical anomalies identification
  • 作者:左仁广
  • 英文作者:ZUO Renguang;State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences (Wuhan);
  • 关键词:勘查地球化学 ; 弱小地球化学异常 ; 分形 ; 机器学习
  • 英文关键词:geochemical prospecting;;weak geochemical anomalies;;fractal;;machine learning
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国地质大学(武汉)地质过程与矿产资源国家重点实验室;
  • 出版日期:2018-06-26 18:56
  • 出版单位:地学前缘
  • 年:2019
  • 期:v.26;No.138
  • 基金:国家自然科学基金项目(41772344,41522206);; 湖北省自然科学基金项目(2017CFA053);; 地质过程与矿产资源国家重点实验室自主研究课题(MSFGPMR03-3)
  • 语种:中文;
  • 页:DXQY201904010
  • 页数:9
  • CN:04
  • ISSN:11-3370/P
  • 分类号:71-79
摘要
我国积累的大量高质量、多元素、多尺度的地球化学数据,为矿产勘查与环境评价提供了有效的数据支撑。如何对这些数据进行二次开发和再利用,提取有价值的地球化学异常信息并带动找矿突破,是缓解当前矿产资源短缺的重要途径之一。在覆盖区和深部的找矿实践中,由于矿体埋深和覆盖层的影响,往往在表生介质中形成弱小的地球化学异常,识别和评价弱小地球化学异常是当前勘查地球化学数据处理的重要方向之一。本文围绕地球化学异常信息的提取和评价,主要从以下几个方面讨论了相关的国内外研究进展和发展趋势:勘查地球化学数据处理与异常识别方法和模型,勘查地球化学数据闭合效应的影响及其解决方案,基于大数据和机器学习的勘查地球化学数据处理以及弱小地球化学异常的识别和评价。研究发现,在地质环境的约束下,基于大数据思维和机器学习相结合的方法,注重地球化学空间分布模式与已发现矿床的相关关系,同时使用所有地球化学变量能有效刻画具有非线性特征的地球化学空间分布模式,可识别出传统方法无法识别的异常,为开展地球化学空间模式识别与异常提取提供了新的途径。
        We have collected in China many high-quality,multi-element and multi-scale geochemical exploration datasets,which provide an effective data support for mineral exploration and environmental studies.It is of great interest to further explore these datasets to identify geochemical anomalies associated with mineralization,in supporting breakthroughs in the next round of mineral exploration to alleviate current mineral shortage distress.However,deep buried or covered mineral deposits pose significant challenge to mineral exploration,what we are currently facing is how to identify and evaluate weak geochemical anomalies in the field of exploration geochemical data processing.In this paper,we reviewed the state-ofthe-art methods and models for exploration geochemical data processing and geochemical anomaly identification.We also discussed the data closure problem and its solutions,as well as application of big data and machine learning methods to geochemical data processing.It is shown that the hybrid method,which combines big data thinking and machine learning methods under the constraints of geological settings,is a powerful tool to explore geochemical patterns and identify geochemical anomalies.The hybrid method takes into account the correlations between geochemical patterns and locations of mineral deposit,involving all geochemical variables,and can reveal non-linear characteristics of geochemical patterns.
引文
[1]成秋明.覆盖区矿产综合预测思路与方法[J].地球科学:中国地质大学学报,2012,37(6):1109-1125.
    [2] CHENG Q M.Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas[J].Journal of Geochemical Exploration,2012,122:55-70.
    [3] DARNLEY A G,BJRKLUND A,BLVIKEN B,et al.A global geochemical database for environmental and resource management[R]∥Final report of IGCP Project 259.Earth Sciences.Paris:UNESCO Publishing,1995:19.
    [4] XIE X J,MU X Z,REN T X.Geochemical mapping in China[J].Journal of Geochemical Exploration,1997,60:99-113.
    [5] DE CARITAT P,COOPER M.A continental-scale geochemical atlas for resource exploration and environmental management:the national geochemical survey of Australia[J].Geochemistry:Exploration,Environment,Analysis,2016,16:3-13.
    [6] XIE X J,CHENG H X.Sixty years of exploration geochemistry in China[J].Journal of Geochemical Exploration,2014,139:4-8.
    [7] XIE X J,WANG X Q,ZHANG Q,et al.Multiscale geochemical mapping in China[J].Geochemistry:Exploration,Environment,Analysis,2008,8:333-341.
    [8]王学求,谢学锦,张本仁,等.地壳全元素探测:构建“化学地球”[J].地质学报,2011,8(6):854-864.
    [9]王学求.全球地球化学基准:了解过去,预测未来[J].地学前缘,2012,19(3):7-18.
    [10]王学求,周建,徐善法,等.全国地球化学基准网建立与土壤地球化学基准值特征[J].中国地质,2016,43(5):1469-1480.
    [11]左仁广.勘查地球化学数据处理方法研究进展[J].地质论评,2013,59(增刊):1027-1028.
    [12] COHEN D R,KELLEY D L,ANAND R,et al.Major advances in exploration geochemistry,1998—2007[J].Geochemistry:Exploration,Environment,Analysis,2010,10:3-16.
    [13] HAWKES H E,WEBB J S.Geochemistry in Mineral Exploration[M].New York:Harper and Row,1962,415.
    [14] SINCLAIR A J.Selection of threshold values in geochemical data using probability graphs[J].Journal of Geochemical Exploration,1974,3:129-149.
    [15] MIESCH A T.Estimation of the geochemical threshold and its statistical significance[J].Journal of Geochemical Exploration,1981,16:49-76.
    [16] GRUNSKY E C.The interpretation of geochemical survey data[J].Geochemistry:Exploration,Environment,Analysis,2010,10:27-74.
    [17] MATHERON G.Traitéde géostatistique appliquée[M].Paris:Tome 1,Editions Technip,1962:334.
    [18] CHENG Q M,AGTERBERG F P,BALLANTYNE S B.The separation of geochemical anomalies from background by fractal methods[J].Journal of Geochemical Exploration,1994,51:109-130.
    [19] CHENG Q M,XU Y G,GRUNSKY E.Integrated spatial and spectrum method for geochemical anomaly separation[J].Natural Resources Research,2000,9:43-52.
    [20] CHENG Q M.Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu,Yunnan Province,China[J].Ore Geology Reviews,2007,32:314-324.
    [21] AITCHISON J.The statistical analysis of compositional data(with discussion)[J].Journal of the Royal Statistical Society,1982,44:139-177.
    [22] AITCHISON J.The statistical analysis of compositional data[M].London:Chapman&Hall,1986:416.
    [23] BOX G E P,COX D R.An analysis of transformations[J].Journal of the Royal Statistical Society.Series B(Methodological),1964:211-252.
    [24] AGTERBERG F P.Mixtures of multiplicative cascade models in geochemistry[J].Nonlinear Processes in Geophysics,2007,14:201-209.
    [25] REIMANN C,FILZMOSER P,GARRETT R G,et al.Statistical data analysis explained-applied environmental statistics with R[M].Chichester,UK:Wiley,2008.
    [26] TUKEY J W.Exploratory data analysis[M].Reading,USA:Addison-Wesley,1977.
    [27] REIMANN C.Geochemical mapping:technique or art?[J].Geochemistry:Exploration,Environment,Analysis,2005,5:359-370.
    [28] REIMANN C.Sub-continental-scale geochemical mapping:sampling,quality control and data analysis issues[J].Geochemistry:Exploration,Environment,Analysis,2005,5:311-323.
    [29] DE MULDER E F J,CHENG Q M,AGTERBERG F P,et al.New and game-changing developments in geochemical exploration[J].Episodes,2016,39(1):70-71.
    [30] KRIGE D G.A study of gold and uranium distribution patterns in the Klerksdorp goldfield[J].Geoexploration,1966,4:43-53.
    [31]成秋明,张生元,左仁广,等.多重分形滤波方法和地球化学信息提取技术研究与进展[J].地学前缘,2009,16(2):185-198.
    [32] BLVIKEN B,STOKKE P R,FEDER J,et al.The fractal nature of geochemical landscapes[J].Journal of Geochemical Exploration,1992,43:91-109.
    [33] LI C J,MA T H,SHI J F.Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background[J].Journal of Geochemical Exploration,2003,77:167-175.
    [34] CARRANZA E J M.Geochemical anomaly and mineral prospectivity mapping in GIS[M]∥Handbook of exploration and environmental geochemistry.Volume 11.Amsterdam:Elsevier,2008:351.
    [35] MORAN P A.Notes on continuous stochastic phenomena[J].Biometrika,1950,37(1/2):17-23.
    [36] GEARY R C.The contiguity ratio and statistical mapping[J].The Incorporated Statistician,1954,5(3):115-146.
    [37] WANG H C,CHENG Q M,ZUO R G.Spatial characteristics of geochemical patterns related to Fe mineralization in the southwestern Fujian province(China)[J].Journal of Geochemical Exploration,2015,148:259-269.
    [38] FOTHERINGHAM A S,BRUNSDON C.Local forms of spatial analysis[J].Geographical Analysis,1999,31(4):340-358.
    [39] FOTHERINGHAM A S,BRUNSDON C,CHARLTON M.Geographically weighted regression:the analysis of spatially varying relationships[M].New York:Wiley,2002.
    [40] WANG H C,CHENG Q M,ZUO R G.Quantifying the spatial characteristics of geochemical patterns via GIS-based geographically weighted statistics[J].Journal of Geochemical Exploration,2015,157:110-119.
    [41] CHENG Q M,BONHAM-CARTER G,WANG W L,et al.A spatially weighted principal component analysis for multielement geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan,China[J].Computers&Geosciences,2011,37:662-669.
    [42] AITCHISON J,BARCEL-VIDAL C,MARTN-FERNNDEZ J,et al.Logratio analysis and compositional distance[J].Mathematical Geology,2000,32:271-275.
    [43] FILZMOSER P,HRON K,REIMANN C.Univariate statistical analysis of environmental(compositional)data:problems and possibilities[J].Science of the Total Environment,2009,407:6100-6108.
    [44] EGOZCUE J J,PAWLOWSKY-GLAHN V, MATEUFIGUERAS G,et al.Isometric logratiotrans formations for compositional data analysis[J].Mathematical Geology,2003,35:279-300.
    [45] ZHAO J,WANG W L,DONG L H,et al.Application of geochemical anomaly identification methods in mapping of intermediate and felsic igneous rocks in eastern Tianshan,China[J].Journal of Geochemical Exploration,2012,122:81-89.
    [46] ZUO R G,XIA Q L,WANG H C.Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization[J].Applied Geochemistry,2013,28:202-211.
    [47] XIONG Y H,ZUO R G.A comparative study of two modes for mapping felsic intrusions using geoinformatics[J].Applied Geochemistry,2016,75:277-283.
    [48] HOWE D,COSTANZO M,FEY P,et al.Big data:the future of biocuration[J].Nature,2008,455:47-50.
    [49] FINLAYSON A E T.Dealing with data:fostering fidelity[J].Science,2011,331:1515.
    [50] MAYER-SCHONBERGER V,CUKIER K.Big data:a revolution that will transform how we live,work and think[M].New York:Houghton Mifflin Harcourt Publishing Company,2013.
    [51] GUO H,WANG L Z,CHEN F,et al.Scientific big data and digital earth[J].Chinese Science Bulletin,2014,59(35):5066-5073.
    [52] WANG H,XU Z S,FUJITA H,et al.Towards felicitous decision making:an overview on challenges and trends of Big data[J].Information Sciences,2016,367/368:747-765.
    [53]赵鹏大.大数据时代呼唤各科学领域的数据科学[J].中国科技奖励,2014,183:29-30.
    [54]翟明国.花岗岩:大陆地质研究的突破口以及若干关键科学问题:“岩石学报”花岗岩专辑代序[J].岩石学报,2017,33(5):1369-1380.
    [55]张旗,周永章.大数据正在引发地球科学领域一场深刻的革命:《地质科学》2017年大数据专题代序[J].地质科学,2017,52(3):1-12.
    [56]王金荣,陈万峰,张旗,等.MORB数据挖掘:玄武岩判别图反思[J].大地构造与成矿学,2017,41(2):420-431.
    [57]赵鹏大.大数据时代数字找矿与定量评价[J].地质通报,2015,34(7):1255-1259.
    [58]肖克炎,孙莉,李楠,等.大数据思维下的矿产资源评价[J].地质通报,2015,34(7):1266-1272.
    [59]陈建平,李婧,崔宁,等.大数据背景下地质云的构建与应用[J].地质通报,2015,34(7):1260-1265.
    [60]王登红,刘新星,刘丽君.地质大数据的特点及其在成矿规律、成矿系列研究中的应用[J].矿床地质,2015,34(6):1143-1154.
    [61]严光生,薛群威,肖克炎,等.地质调查大数据研究的主要问题分析[J].地质通报,2015,34(7):1273-1279.
    [62]谭永杰.地质大数据体系建设的总体框架研究[J].中国地质调查,2016,3(3):1-6.
    [63]吴冲龙,刘刚,张夏林,等.地质科学大数据及其利用的若干问题探讨[J].科学通报,2016,61:1797-1807.
    [64]周永章,黎培兴,王树功,等.矿床大数据及智能矿床模型研究背景与进展[J].矿物岩石地球化学通报,2017,36(2):327-331,344.
    [65] CARGILL S,CLARK A.Report on the activity of IGCP Project 98[J].Mathematical Geology,1978,10:411-417.
    [66] SINGER D A,KOUDA R.Application of a feedforward neural network in the search for Kuroko deposits in the Hokuroku district,Japan[J].Mathematical Geology,1996,28:1017-1023.
    [67] BROWN W M,GEDEON T D,GROVES D I,et al.Artificial neural networks:a new method for mineral prospectivity mapping[J].Australian Journal of Earth Sciences,2000,47:757-770.
    [68] RIGOL-SANCHEZ J P, CHICA-OLMO M, ABARCAHERNANDEZ F.Artificial neural networks as a tool for mineral potential mapping with GIS[J].International Journal of Remote Sensing,2003,24:1151-1156.
    [69] PORWAL A,CARRANZA E J M,HALE M.Artificial neural networks for mineral-potential mapping:a case study from Aravalli Province, Western India[J].Natural Resources Research,2003,12:155-171.
    [70] ZUO R G,CARRANZA E J M.Support vector machine:a tool for mapping mineral prospectivity[J].Computers&Geosciences,2011,37:1967-1975.
    [71] ABEDI M,NOROUZI G H,BAHROUDI A.Support vector machine for multi-classification of mineral prospectivity areas[J].Computers&Geosciences,2012,46:272-283.
    [72] PORWAL A,CARRANZA E J M,HALE M.Bayesian network classifiers for mineral potential mapping[J].Computers&Geosciences,2006,32:1-16.
    [73] RODRIGUEZ-GALIANO V F,CHICA-OLMO M,CHICA-RIVAS M.Predictive modelling of gold potential with the integration of multisource information based on random forest:a case study on the Rodalquilar area,Southern Spain[J].International Journal of Geographical Information Science,2014,28:1336-1354.
    [74] CARRANZA E J M,LABORTE A G.Data-driven predictive mapping of gold prospectivity,Baguio district,Philippines:application of random forests algorithm[J].Ore Geology Review,2015,71:777-787.
    [75] CARRANZA E J M,LABORTE A G.Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra(Philippines)[J].Computer&Geosciences,2015,74:60-70.
    [76] CHEN Y L.Mineral potential mapping with a restricted Boltzmann machine[J].Ore Geology Reviews,2015,71:749-760.
    [77] CHEN Y L,WU W.Mapping mineral prospectivity using an extreme learning machine regression[J].Ore Geology Reviews,2017,80:200-213.
    [78] CHEN Y L,LIU L J,LI X B.Application of continuous restricted Boltzmann machine to identify multivariate geochemical anomaly[J].Journal of Geochemical Exploration,2014,140:56-63.
    [79] XIONG Y H,ZUO R G.Recognition of geochemical anomalies using a deep autoencoder network[J].Computers&Geosciences,2016,86:75-82.
    [80] ZUO R G.Machine learning of mineralization-related geochemical anomalies:a review of potential methods[J].Natural Resources Research,2017,26(4):457-464.
    [81]苑凤华,潘建,陈馥,等.利用子区中位数衬值滤波法识别弱小异常:以内蒙古绰源地区1/5万水系沉积物测量为例[J].吉林地质,2011,30(1):96-99.
    [82]于永安,刘洪利,李杰美,等.内蒙古阿吉勒大型多金属矿化带的发现及启示[J].地质与勘探,2010,46(5):798-804.
    [83]史长义,张金华,黄笑梅.子区中位数衬值滤波法及弱小异常识别[J].物探与化探,1999,23(4),250-257.
    [84]任光明,李佑国,骆耀南,等.基于SAMCF法的攀西地区水系沉积物铂族元素异常提取[J].矿物岩石地球化学通报,2007,26(3):240-244.
    [85]金俊杰,陈建国.地球化学异常提取的自适应衬值滤波法[J].物探与化探,2011,35(4):526-531.
    [86]赵宁博,傅锦,张川,等.子区中位数衬值滤波法在地球化学异常识别中的应用[J].世界核地质科学,2012,29(1):47-51.
    [87] ZUO R G,CHENG Q M.Mapping singularities:a technique to identify potential Cu mineral deposits using sediment geochemical data,an example for Tibet,west China[J].Mineralogical Magazine,2008,72:531-534.
    [88] ZUO R G,CHENG Q M,AGTERBERG F P,et al.Application of singularity mapping technique to identification local anomalies using stream sediment geochemical data,a case study from Gangdese,Tibet,Western China[J].Journal of Geochemical Exploration,2009,101:225-235.
    [89] ZUO R G,WANG J,CHEN G X.Identification of weak anomalies:a multifractal perspective[J].Journal of Geochemical Exploration,2015,148:12-24.
    [90] CHENG Q M,AGTERBERG F P.Singularity analysis of ore-mineral and toxic trace elements in stream sediments[J].Computers&Geosciences,2009,35:234-244.
    [91] ZUO R G,WANG J.Fractal/multifractal modeling of geochemical data:a review[J].Journal of Geochemical Exploration,2016,164:33-41.
    [92] ZUO R G,CARRANZA E J M,WANG J.Spatial analysis and visualization of exploration geochemical data[J].EarthScience Reviews,2016,158:9-18.
    [93] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A,1998,454:903-995.
    [94] XU G M,CHENG Q M,ZUO R G,et al.Application of improved bi-dimensional empirical mode decomposition(BEMD)based on Perona-Malik to identify copper anomaly association in the southwestern Fujian(China)[J].Journal of Geochemical Exploration,2016,164:65-74.
    [95]陈建国,夏庆霖.利用小波分析提取深层次物化探异常信息[J].地球科学:中国地质大学学报,1999,24(5),509-512.
    [96] CHEN G X,CHENG Q M.Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration[J].Computers&Geosciences,2016,87:56-66.
    [97] ZUO R G.Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt,Tibet(China)[J].Journal of Geochemical Exploration,2011,111:13-22.
    [98] ZUO R G.Identification of weak geochemical anomalies using robust neighborhood statistics coupled with GIS in covered areas[J].Journal of Geochemical Exploration,2014,136:93-101.
    [99] WANG J,ZUO R G.An extended local gap statistic for identifying geochemical anomalies[J].Journal of Geochemical Exploration,2016,164:86-93.
    [100] ZHAO J N,CHEN S Y,ZUO R G.Identifying geochemical anomalies associated with Au-Cu mineralization using multifractal and artificial neural network models in the Ningqiang district,Shaanxi,China[J].Journal of Geochemical Exploration,2016,164:54-64.
    [101] ZUO R G,XIONG Y H.Big data analytics of identifying geochemical anomalies supported by machine learning methods[J].Natural Resources Research,2018,27:5-13.
    [102] ZUO R G.Selection of an elemental association related to mineralization using spatial analysis[J].Journal of Geochemical Exploration,2018,184:150-157.
    [103] XIONG Y H,ZUO R G,WANG K X,et al.Identification of geochemical anomalies via local RX anomaly detector[J].Journal of Geochemical Exploration,2018,189:64-71.
    [104]王瑞廷,毛景文,任小华,等.区域地球化学异常评价的现状及其存在的问题[J].中国地质,2005,32(1):168-175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700