用户名: 密码: 验证码:
同源岩浆不同期次之间混合产生的暗色包体——以北拉萨地块中部晚白垩世桑心日岩体为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:MMEs formed by magma mixing of different episodes of the same sourced magma: A case study of the Late Cretaceous Sangxinri pluton in the middle part of the northern Lhasa Block
  • 作者:陈伟 ; 宋杨 ; 刘洪章 ; 孙渺 ; 马旭东 ; 丁吉顺 ; 黎心远
  • 英文作者:CHEN Wei;SONG Yang;LIU HongZhang;SUN Miao;MA XuDong;DING JiShun;LI XinYuan;MNR Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy of Geological Sciences;Regional Geological Survey Institute of Hebei Province;School of Earth Science and Resource,China University of Geosciences;College of Earth Science,Chengdu University of Technology;
  • 关键词:北拉萨地块 ; 暗色微粒包体 ; 锆石U-Pb定年 ; 锆石原位Lu-Hf同位素
  • 英文关键词:The northern Lhasa Block;;Mafic Microgranular enclaves(MMEs);;Zircon U-Pb dating;;Lu-Hf isotopes
  • 中文刊名:YSXB
  • 英文刊名:Acta Petrologica Sinica
  • 机构:中国地质科学院矿产资源研究所自然资源部成矿作用和资源评价重点实验室;河北省区域地质调查院;中国地质大学地球科学与资源学院;成都理工大学地球科学学院;
  • 出版日期:2019-07-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:v.35
  • 基金:中国地质调查局项目(DD20160026)资助
  • 语种:中文;
  • 页:YSXB201907012
  • 页数:15
  • CN:07
  • ISSN:11-1922/P
  • 分类号:207-221
摘要
本文在研究西藏北拉萨块体中段桑心日岩体中的暗色包体时发现了一种具有特殊岩石成因的暗色包体。暗色包体呈椭球状,在暗色包体和寄主岩的接触面上通常形成一个明显的可能由风化作用造成的间隙面。暗色包体为二长玢岩-花岗闪长玢岩,寄主岩为花岗岩,暗色包体明显较寄主岩更基性,更富Na_2O、CaO、MgO和Fe_2O_3~T。暗色包体和寄主岩具有明显不同的稀土元素特征,暗色包体的稀土元素含量变化较大,最基性样品具有最高的稀土含量,随着基性程度的降低稀土元素含量明显下降。随着岩浆的进一步演化,岩浆向花岗岩方向演化,稀土含量又逐步升高。寄主岩和暗色包体具有基本一致的微量元素组成,具有典型的弧岩浆岩的特征,富集Rb、Cs、K等大离子亲石元素和Th、U,亏损Nb、Ta、Ti等高场强元素。此外,暗色包体和寄主岩具有明显的Ba、Sr的负异常。暗色包体成岩年龄为75. 6±1. 2Ma,寄主岩的成岩年龄为71. 8±0. 6Ma,暗色包体成岩年龄较寄主岩早约4Myr。两者具有一致的锆石原位Lu-Hf同位素特征。综合以上岩相学、年代学、元素地球化学和同位素地球化学证据,我们认为桑心日暗色包体和寄主岩来源于同源母岩浆,初始岩浆在母岩浆房中经历了不同程度的含钾角闪石结晶分离作用,并沿早期较弱的构造裂隙侵入到地壳的某一层位,随着构造活动进一步加剧,经过进一步分异母岩浆大规模上侵,并将早先侵位处于半塑性状态的暗色包体侵吞、裹挟至近地表。桑心日暗色包体最可能的成因模式可以解释为同源岩浆不同期次间的物理混合。
        This paper proposes a special petrogenetic model for mafic microgranular enclaves( MMEs) based on a systematic study on the Sangxinri pluton in the middle part of the northern Lhasa Block,Tibet,China. The MMEs found in the Sangxinri host monzogranite are composed of monzonite porphyry to granodiorite porphyry,which usually present axiolite with an compactly cement with host rocks probably caused by weathering. The MMEs are more basic than the host rocks with higher Na2 O,Ca O,MgO and Fe2 O3 T contents. The MMEs have distinct REE characteristics from the host rocks and more variable REE contents than the host rocks.The most basic MME samples have the highest REE contents,while the most acid MME samples have lowest REE contents,indicative of reducing REE contents with increase of Si O2. With evolution of the magma from the MMEs to the host monzogranite,the REE contents rise to a high level. Both the MMEs and host rocks show characteristics of arc rocks with enrichments in large ion lithophile elements( LILEs) Rb,Cs,K,etc.,but depletions in high field strength elements( HFSEs) Nb,Ta and Ti etc. and Sr and Ba elements. Zircon LA-ICP-MS U-Pb dating obtains a 75. 6 ± 1. 2 Ma age and a 71. 8 ± 0. 6 Ma age for the MMEs and host rocks,respectively. Although the MMEs are 4 Myr earlier than the host rocks,they have consistent zircon Lu-Hf isotopes. Synthesizing above petrography,geochemistry and isotopic evidences,we suggest the MMEs are derived from the same source rocks with host rocks. The initial magma experienced various degree of K-bearing hornblende fractional crystallization in the parent magma chamber,and then emplaced along with the early tectonic fault and formed the MMEs. With aggravation of the tectonic motion,massive magma experienced further differentiation upwelled,wrapped and carried the earlier formed MMEs( in semiplastic) to subsurface. The most probable petrogenetic model for the Sangxinri MMEs is magma mingling between the magmas from different periods of the same sourced rock.
引文
Allen CM.1991.Local equilibrium of mafic enclaves and granitoids of the Turtle Pluton,Southeast California:Mineral,chemical,and isotopic evidence.American Mineralogist,76:574-588
    Arth JG.1976.Behavior of trace elements during magmatic processes:Asummary of theoretical models and their applications.Journal of Research of the U.S.Geological Survey,4(1):41-47
    Baker DR.1989.Tracer versus trace element diffusion:Diffusional decoupling of Sr concentration from Sr isotope composition.Geochimica et Cosmochimica Acta,53(11):3015-3023
    Barbarin B.2005.Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith,California:Nature,origin,and relations with the hosts.Lithos,80(1-4):155-177
    Blichert-Toft J and Albarède F.1997.The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system.Earth and Planetary Science Letters,148(1-2):243-258
    Blundy JD and Sparks RSJ.1992.Petrogenesis of mafic inclusions in granitoids of the Adamello Massif,Italy.Journal of Petrology,33(5):1039-1104
    Chappell BW,White AJR and Wyborn D.1987.The importance of residual source material(restite)in granite petrogenesis.Journal of Petrology,28(6):1111-1138
    Chappell BW and White AJR.1992.I-and S-type granites in the Lachlan fold belt.Earth and Environmental Science Transactions of the Royal Society of Edinburgh,83(1-2):1-26
    Chappell BW,White AJR,Williams IS,Wyborn D and Wyborn LAI.2000.Lachlan fold belt granites revisited:High-and lowtemperature granites and their implications.Australian Journal of Earth Sciences,47(1):123-138
    Chen B,Chen ZC and Jahn BM.2009.Origin of mafic enclaves from the Taihang Mesozoic orogen,North China craton.Lithos,110(1-4):343-358
    Chen W,Song Y,Qu XM,Sun M,Ding JX and Ma XD.2018.MMEs in the Tangjiangqiongguo pluton in the north Lhasa block formed by magma mixing of different episodes of the same sourced magma:Anew petrogenetic model for the MMEs.Earth-science,http://kns.cnki.net/kcms/detail/42.1874.P.20180704.1739.006.html(in Chinese)
    Chen YD,Price RC and White AJR.1989.Inclusions in three S-type granites from southeastern Australia.Journal of Petrology,30(5):1181-1218
    Dahlquist JA.2002.Mafic microgranular enclaves:Early segregation from metaluminous magma(Sierra de Chepes),Pampean Ranges,NW Argentina.Journal of South American Earth Sciences,15(6):643-655
    Didier J.1987.Contribution of enclave studies to the understanding of origin and evolution of granitic magmas.Geologische Rundschau,76(1):41-50
    Didier J and Barbarin B.1991.Enclaves and Granite Petrology,Developments in Petrology.Amsterdam:Elsevier,1-625
    Donaire T,Pascual E,Pin C and Duthou JL.2005.Microgranular enclaves as evidence of rapid cooling in granitoid rocks:The case of the Los Pedroches granodiorite,Iberian Massif,Spain.Contributionsto Mineralogy and Petrology,149(3):247-265
    Dong X,Zhang ZM,Santosh M,Wang W,Yu F and Liu F.2011.Late Neoproterozoic thermal events in the northern Lhasa terrane,South Tibet:Zircon chronology and tectonic implications.Journal of Geodynamics,52(5):389-405
    Dorais MJ,Whitney JA and Roden MF.1990.Origin of mafic enclaves in the Dinkey Creek Pluton,Central Sierra Nevada batholith,California.Journal of Petrology,31(4):853-881
    Elburg MA.1996.Evidence of isotopic equilibration between microgranitoid enclaves and host granodiorite,Warburton granodiorite,Lachlan Fold Belt,Australia.Lithos,38(1-2):1-22
    Elhlou S,Belousova E,Griffin WL,Pearson NJ and O’Reilly SY.2006.Trace element and isotopic composition of GJ-red zircon standard by laser ablation.Geochimica et Cosmochimica Acta,70(18):A158
    Feeley TC,Wilson LF and Underwood SJ.2008.Distribution and compositions of magmatic inclusions in the Mount Helen dome,Lassen volcanic center,California:Insights into magma chamber processes.Lithos,106(1-2):173-189
    Fujimaki H,Tatsumoto M and Aoki KI.1984.Partition coefficients of Hf,Zr,and REE between phenocrysts and groundmasses.Journal of Geophysical Research:Solid Earth,89(S02):B662-B672
    Girardeau J,Mercier JCC and Wang XB.1985.Petrology of the mafic rocks of the Xigaze ophiolite,Tibet.Contributions to Mineralogy and Petrology,90(4):309-321
    Griffin WL,Pearson NJ,Belousova E,Jackson SE,van Achterbergh E,O’Reilly SY and Shee SR.2000.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.Geochimica et Cosmochimica Acta,64(1):133-147
    Griffin WL,Wang X,Jackson SE,Pearson NJ,O’Reilly SY,Xu XSand Zhou XM.2002.Zircon chemistry and magma mixing,SEChina:In-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes.Lithos,61(3-4):237-269
    Hawkesworth CJ and Kemp AIS.2006.Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution.Chemical Geology,226(3-4):144-162
    Holden P,Halliday AN,Stephens WE and Henney PJ.1991.Chemical and isotopic evidence for major mass transfer between mafic enclaves and felsic magma.Chemical Geology,92(1-3):135-152
    Hou KJ,Li YH,Zou TR,Qu XM,Shi YR and Xie GQ.2007.Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications.Acta Petrologica Sinica,23(10):2595-2604(in Chinese with English abstract)
    Hu DG,Wu ZH,Jiang W,Shi YR,Ye PS and Liu QS.2005.SHRIMPzircon U-Pb age and Nd isotopic study on the Nyainqêntanglha Group in Tibet.Science in China(Series D),48(9):1377-1386
    Ilbeyli N and Pearce JA.2005.Petrogenesis of igneous enclaves in plutonic rocks of the central Anatolian crystalline complex,Turkey.International Geology Review,47(10):1011-1034
    Jiang YH,Ling HF,Jiang SY,Fan HH,Shen WZ and Ni P.2005.Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg,potassic,quenched enclaves at Xiangshan,Southeast China.Journal of Petrology,46(6):1121-1154
    Jiang YH,Jin GD,Liao SY,Zhou Q and Zhao P.2010.Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen,central China:Implications for a continental arc to continent-continent collision.Lithos,117(1-4):183-197
    Johnston AD and Wyllie PJ.1988.Interaction of granitic and basic magmas:Experimental observations on contamination processes at10kbar with H2O.Contributions to Mineralogy and Petrology,98(3):352-362
    Kadiogˇlu YK and Güle9 N.1999.Types and genesis of the enclaves in central Anatolian granitoids.Geological Journal,34(3):243-256
    Kocak K.2006.Hybridization of mafic microgranular enclaves:Mineral and whole-rock chemistry evidence from the Karamadazgranitoid,Central Turkey.International Journal of Earth Sciences,95(4):587-607
    Kocak K,Zedef V and Kansun G.2011.Magma mixing/mingling in the Eocene Horoz(Nigde)granitoids,Central southern Turkey:Evidence from mafic microgranular enclaves.Mineralogy and Petrology,103(1-4):149-167
    Kumar S and Rino V.2006.Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids,central India:Evidence of magma mixing,mingling,and chemical equilibration.Contributions to Mineralogy and Petrology,152(5):591-609
    Lesher CE.1994.Kinetics of Sr and Nd exchange in silicate liquids:Theory,experiments,and applications to uphill diffusion,isotopic equilibration,and irreversible mixing of magmas.Journal of Geophysical Research:Solid Earth,99(B5):9585-9604
    Liu L,Qiu JS and Li Z.2013.Origin of mafic microgranular enclaves(MMEs)and their host quartz monzonites from the Muchen pluton in Zhejiang Province,Southeast China:Implications for magma mixing and crust-mantle interaction.Lithos,160-161:145-163
    Liu YS,Hu ZC,Gao S,Günther D,Xu J and Gao CG.2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1-2):34-43
    Liu YS,Gao S,Hu ZC,Gao CG,Zong KQ and Wang DB.2010a.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths.Journal of Petrology,51(1-2):537-571
    Liu YS,Hu ZC,Zong KQ,Gao CG,Gao S,Xu J and Chen HH.2010b.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS.Chinese Science Bulletin,55(15):1535-1546
    Ludwig KR.2003.User’s Manual for ISOPLOT 3.00:AGeochronological Toolkit for Microsoft Excel.Berkeley CA:Berkeley Geochronology Center,Special Publication,1-71
    Maniar PD and Piccoli PM.1989.Tectonic discrimination of granitoids.Geological Society of America Bulletin,101(5):635-643
    Middlemost EAK.1994.Naming materials in the magma/igneous rock system.Earth-Science Reviews,37(3-4):215-224
    Noyes HJ,Frey FA and Wones DR.1983.A tale of two plutons:Geochemical evidence bearing on the origin and differentiation of the Red Lake and Eagle Peak plutons,Central Sierra Nevada,California.The Journal of Geology,91(5):487-509
    Pan GT,Ding J,Yao DS and Wang LQ.2004.Geological Map(1∶1500000)of Qinghai-Xizang(Tibetan)Plateau and Adjacent Areas.Chengdu:Chengdu Cartographic Publishing House(in Chinese)
    Pati1o Douce AE and Johnston AD.1991.Phase equilibria and melt productivity in the pelitic system:Implications for the origin of peraluminous granitoids and aluminous granulites.Contributions to Mineralogy and Petrology,107:202-218
    Peccerillo A and Taylor SR.1976.Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey.Contributions to Mineralogy and Petrology,58(1):63-81
    Perugini D,Poli G,Christofides G and Eleftheriadis G.2003.Magma mixing in the Sithonia plutonic complex,Greece:Evidence from mafic microgranular enclaves.Mineralogy and Petrology,78(3-4):173-200
    Qu YG,Wang YS and Duan JX.2011.The Regional Geological Survey Report of the People’s Republic of China(1∶250000 Duoba).Wuhan:China University of Geosciences Press(in Chinese)
    Rapp RP and Watson EB.1995.Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling.Journal of Petrology,36(4):891-931
    Shellnutt JG,Jahn BM and Dostal J.2010.Elemental and Sr-Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province,SW China.Lithos,119(1-2):34-46
    Shi RD,Yang JS,Xu ZQ and Qi XX.2008.The Bangong Lake ophiolite(NW Tibet)and its bearing on the tectonic evolution of the BangongNujiang suture zone.Journal of Asian Earth Sciences,32(5-6):438-457
    Sisson TW,Ratajeski K,Hankins WB and Glazner AF.2005.Voluminous granitic magmas from common basaltic sources.Contributions to Mineralogy and Petrology,148(6):635-661
    Saby E and Martin H.2008.Mafic and felsic magma interaction in granites:The Hercynian Karkonosze Pluton(Sudetes,Bohemian Massif).Journal of Petrology,49(2):353-391
    S9derlund U,Patchett PJ,Vervoort JD and Isachsen CE.2004.The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of precambrian mafic intrusions.Earth and Planetary Science Letters,219(3-4),311-324
    Sun M,Chen W,Qu XM,Ma XD and Ding JS.2018.Petrogenesis of the Late Cretaceous Jiangba volcanic rocks and its indications for the thinning of the thickened crust in Xiongmei area,Tibet.Earth Science,43(9):3234-3251(in Chinese with English abstract)
    Sun SS and McD onough WF.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ(eds.).Magmatism in the Ocean Basins.Geological Society,London,Special Publications,42(1):313-345
    Vernon RH.1984.Microgranitoid enclaves in granites-globules of hybrid magma quenched in a plutonic environment.Nature,309(5967):438-439
    White RV,Tarney J,Kerr AC,Saunders AD,Kempton PD,Pringle MSand Klaver GT.1999.Modification of an oceanic plateau,Aruba,Dutch Caribbean:Implications for the generation of continental crust.Lithos,46(1):43-68
    Wiebe RA,Smith D,Sturm M,King EM and Seckler MS.1997.Enclaves in the Cadillac mountain granite(Coastal Maine):Samples of hybrid magma from the base of the chamber.Journal of Petrology,38(3):393-423
    Zhang KJ.2004.Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet(China)indicate a tectonic transition from continental collision to back-arc rifting.Earth and Planetary Science Letters,229(1-2):73-89
    Zhang KJ,Xia BD,Wang GM,Li YT and Ye HF.2004.Early Cretaceous stratigraphy,depositional environments,sandstone provenance,and tectonic setting of central Tibet,western China.GSA Bulletin,116(9-10):1202-1222
    Zhang KJ,Zhang YX,Li B and Zhong LF.2007.Nd isotopes of siliciclastic rocks from Tibet,western China:Constraints on provenance and pre-Cenozoic tectonic evolution.Earth and PlanetaryScience Letters,256(3-4):604-616
    Zhang KJ,Zhang YX,Tang XC and Xia B.2012.Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision.Earth-Science Reviews,114(3-4):236-249
    Zhang KJ,Xia B,Zhang YX,Liu WL,Zeng L,Li JF and Xu LF.2014.Central Tibetan Meso-Tethyan oceanic plateau.Lithos,210-211:278-288
    Zhang KJ,Li QH,Yan LL,Zeng L,Lu L,Zhang YX,Hui J,Jin X and Tang XC.2017.Geochemistry of limestones deposited in various plate tectonic settings.Earth-Science Reviews,167:27-46
    Zhu DC,Zhao ZD,Niu YL,Dilek Y and Mo XX.2011.Lhasa terrane in southern Tibet came from Australia.Geology,39(8):727-730
    Zhu DC,Zhao ZD,Niu YL,Wang Q,Dilek Y,Dong GC and Mo XX.2012.Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane.Geological Journal of China Universities,18(1):1-15(in Chinese with English abstract)
    Zhu DC,Zhao ZD,Niu YL,Dilek Y,Hou ZQ and Mo XX.2013.The origin and pre-Cenozoic evolution of the Tibetan Plateau.Gondwana Research,23(4):1429-1454
    陈伟,宋扬,曲晓明,孙渺,丁吉顺,马旭东.2018.北拉萨块体唐江穷果岩体中由同源岩浆不同期次之间混合产生的暗色包体:一种新的暗色包体岩石成因.地球科学,http://kns.cnki.net/kcms/detail/42.1874.P.20180704.1739.006.html
    侯可军,李延河,邹天人,曲晓明,石玉若,谢桂青.2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报,23(10):2595-2604
    潘桂棠,丁俊,姚冬生,王立全.2004.青藏高原及邻区地质图1∶1500000:说明书.成都:成都地图出版社
    曲永贵,王永胜,段建祥.2011.中华人民共和国区域地质调查报告多巴区幅(比例尺1∶250000).武汉:中国地质大学出版社
    孙渺,陈伟,曲晓明,马旭东,丁吉顺.2018.西藏雄梅地区晚白垩世江巴组火山岩岩石成因及对加厚地壳减薄的指示.地球科学,43(9):3234-3251
    朱弟成,赵志丹,牛耀龄,王青,Dilek Y,董国臣,莫宣学.2012.拉萨地体的起源和古生代构造演化.高校地质学报,18(1):1-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700