用户名: 密码: 验证码:
等离子喷涂层微观成形过程数值模拟研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Status on Numerical Simulation of Plasma Spraying Coating in Micro-forming Process
  • 作者:丁述宇 ; 马国政 ; 徐滨士 ; 王海斗 ; 陈书赢 ; 何鹏飞 ; 王译文
  • 英文作者:DING Shuyu;MA Guozheng;XU Binshi;WANG Haidou;CHEN Shuying;HE Pengfei;WANG Yiwen;National Key Laboratory for Remanufacturing,Army Academy of Armored Forces;National Key Laboratory of Human Factors Engineering,China Astronaut Research and Training Center;
  • 关键词:等离子喷涂 ; 涂层成形 ; 数值模拟 ; 飞行粒子 ; 传热传质
  • 英文关键词:plasma spraying;;coating forming;;numerical simulation;;flying particle;;heat and mass transfer
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:陆军装甲兵学院装备再制造技术国防科技重点实验室;中国航天科研训练中心人因工程重点实验室;
  • 出版日期:2019-06-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(51675531;51535011);; 北京市自然科学基金(3172038)~~
  • 语种:中文;
  • 页:CLDB201911021
  • 页数:9
  • CN:11
  • ISSN:50-1078/TB
  • 分类号:120-127+149
摘要
等离子喷涂具有焰流温度高、粒子速度快、能量密度高等特点,是零件表面强化和再制造常用的表面工程技术之一,在耐磨、防腐、热障等诸多领域具有重要应用。涂层的质量往往决定零件的服役性能和使用寿命。等离子喷涂层的成形质量受众多喷涂要素和工艺参数的交叉耦合作用。传统优化喷涂工艺的方法是依据实践经验确定主要工艺参数的可行域,然后反复进行工艺参数调节和涂层性能验证来获得相对合适的工艺参数,这种方式存在成本高、效率低、可靠性差的缺陷。数值模拟作为一种新兴的科学研究方法,在等离子喷涂领域不仅有助于优化喷涂工艺参数,而且有助于深入理解喷涂成形原理和涂层微观构筑过程。研究者们借助数值模拟手段,探究等离子喷涂过程的微观机理,模拟实验中无法观测瞬时、高速的现象,并且指导优化喷涂工艺参数,改善喷枪机械结构,在提升涂层质量与性能上发挥重要作用。本文总结了数值模拟中有限元模拟的研究步骤,综述了近年来国内外数值模拟在等离子喷涂层微观成形过程应用的研究现状。在等离子射流形成的数值模拟中,研究领域从单一物理场转化为多物理场耦合,能较为准确地把握等离子喷枪中复杂的物理现象;其数值模拟范围主要包括等离子射流的温度场模拟、湍流模拟与电磁特性模拟等。在喷涂粒子与射流交互作用数值模拟中,研究者结合实验探究喷涂粒子与大气物性参数对飞行过程的影响,获取最佳的喷涂距离、送粉管角度等工艺参数;其数值模拟范围包括等离子射流中粒子加速过程模拟、加热过程模拟、飞行轨迹和空间分布模拟。在喷涂粒子铺展凝固过程的数值模拟中,将瞬时、高速的铺展凝固过程形象化,掌握基体与大气物性参数对该过程的影响。其数值模拟范围包括粒子撞击铺展过程模拟与凝固生长过程模拟。本文针对模拟过程中存在的湍流模型不够准确,飞行粒子的蒸发与破碎现象研究不够深入,以及多个粒子搭接堆垛成形过程探索较少等问题,展望了数值模拟在等离子涂层微观成形过程的研究方向,并提出基于喷涂成形过程数值模拟建立涂层虚拟成形系统的构想。
        Plasma spraying is characterized by the high temperature of flame flow,fast particle velocity and high energy density,which is one of the common surface engineering techniques for surface strengthening and remanufacturing of parts and has important applications in many fields,such as wear-resisting,anti-corrosion and thermal barrier. The service performance and life of the product is often determined by the quality of the coating. The forming quality of plasma spraying coating is determined by the cross-coupling of many spray elements and process parameters. The traditional method of optimizing spraying process is to determine the feasible region of main process parameters according to practical experience,which has to adjust the progress parameters and test the performance of the coating over and over again. This method has the disadvantage of high cost,low efficiency and poor reliability.Numerical simulation is a high-efficiency,low-cost scientific research method. In the field of plasma spraying,it can not only optimize the spraying process parameters,but also help deeply understand the principle of spray forming and the process of coating microcosmic construction. With the help of numerical simulation,the researchers have explored the microscopic mechanism of the plasma spraying process,the transient and high-speed phenomena which could not be observed in experiment. What's more,it can also guide the optimization of spray process parameters,improve the mechanical structure of the spray gun,and play an important role in improving the coating quality and performance.This paper summarizes the research steps of finite element simulation in numerical simulation and reviews the micro-forming process of plasma sprayed coating in recent research state of numerical simulation. As for the numerical simulation of plasma jet formation,the research field has transformed from a single physics field to a multi-physics coupling. By this mean,it can accurately grasp the complex physical phenomena in plasma spray guns. The numerical simulation ranges includes temperature field simulation of plasma jet,turbulent flow simulation,and electromagnetic characteristic simulation. For the numerical simulation of the interaction between spray particles and jets,the researchers have explored the influence of spraying particles and atmospheric physical parameters on the flight process in combination with experiments,and obtained the best spraying distance,powder feed tube angle and other technological parameters. The numerical simulation ranges include particle acceleration simulation,heating process simulation,flight track and spatial distribution simulation in plasma jet. In the numerical simulation of the solidification and spreading process of sprayed particle,it can visualize the instantaneous,high-speed spread solidification process,and grasp the influence of substrate and atmospheric physical parameters on the process. The numerical simulation ranges includes the simulation of impact deposition process and the solidification growth process of particle.There are some problems in the numerical simulation,which are the inaccuracy of the turbulence model,the superficial research on the evaporation and fragmentation phenomena of flying-particles,and the less exploration of multiple particles overlap stacking processes. It prospects the research direction of the numerical simulation in the micro-forming process of plasma coatings and proposes the conception of establishing a virtual coating forming system,which is based on the numerical simulation of the spray forming process.
引文
1 Vardelle A,Moreau C,Akedo J,et al.Journal of Thermal Spray Technology,2016,25(8),1376.
    2 Wang H D,Chen S Y,Ma G Z,et al.Journal of Mechanical Enginee-ring,2017,53(24),1(in Chinese).王海斗,陈书赢,马国政,等.机械工程学报,2017,53(24),1.
    3 Bobzin K,?te M,Knoch M A,et al.In:Conference Record of the 14th High-Tech Plasma Processes Conference.Neubiberg,2017.
    4 Peng P,Song H,Zhang T,et al.Computers & Chemical Engineering,2017,97,183.
    5 Balachandran K,Matar M,Trujillo J J.Journal of Control and Decision,2016,3(4),267.
    6 Votta E,Presicce M,Della Corte A,et al.International Journal for Numerical Methods in Biomedical Engineering,2016,33(9),e02849.
    7 Qiao J H,Bolot R,Liao H,et al.International Journal of Thermal Sciences,2013,65(65),120.
    8 Lazzaroni C,Baba K,Nikravech M,et al.Journal of Physics D:Applied Physics,2017,45(48),485207.
    9 Ivchenko D,Zhang T,Mariaux G,et al.Journal of Thermal Spray Technology,2018,27(1-2),3.
    10 Ranjbar-Far M,Absi J,Mariaux G,et al.Materials & Design,2010,31(2),772.
    11 Fan Q,Lu W,Wang F.Journal of Materials Processing Technology,2005,166(2),224.
    12 Abderrahmane A,Sahnoun M,Ganaoui M E.European Physical Journal Applied Physics,2017,78(3),4815.
    13 Trelles J P,Pfender E,Heberlein J V R.Journal of Physics D:Applied Physics,2007,40(18),5635.
    14 Pei W,Wei Z,Zhao G,et al.Computational Materials Science,2015,103(9),8.
    15 Benramoul L,El-Hadj A A.Applied Surface Science,2011,258(2),962.
    16 Zhang Y.Research of jet characteristic and drop spreading solidification behavior in plasma spraying process.Ph.D.Thesis,Southwest Petroleum University,China,2015(in Chinese).张勇.等离子喷涂射流特性及熔滴铺展凝固行为研究.博士学位论文,西南石油大学,2015.
    17 Trelles J P.Plasma Sources Science & Technology,2013,22(22),5017.
    18 Alaya M,Chazelas C,Mariaux G,et al.Journal of Thermal Spray Technology,2015,24(1-2),3.
    19 Lisnyak M,Cunha M D,Bauchire J M,et al.Journal of Physics D:Applied Physics,2017,50(31),315203.
    20 Hu F S,Wei Z Y,Liu B L,et al.Materials Science & Technology,2013,21(2),137(in Chinese).胡福胜,魏正英,刘伯林,等.材料科学与工艺,2013,21(2),137.
    21 Trelles J P.IEEE Transactions on Plasma Science,2011,39(11),2870.
    22 Trelles J P.IEEE Transactions on Plasma Science,2014,42(10),2852.
    23 Hu F S,Wei Z Y,Tan C,et al.Journal of Xi’an Jiaotong University,2013,47(9),92(in Chinese).胡福胜,魏正英,谭超,等.西安交通大学学报,2013,47(9),92.
    24 Chazelas C,Trelles J P,Choquet I,et al.Plasma Chemistry & Plasma Processing,2017,37(3),627.
    25 Keith D’Sa,Rao L,Munz R J.Journal of Thermal Spray Technology,2008,17(4),574.
    26 Trelles J P.Journal of Physics D Applied Physics,2013,46(25),255201.
    27 Li H P,Chen X.Plasma Chemistry & Plasma Processing,2002,22(1),27.
    28 Colombo V,Concetti A,Ghedini E,et al.IEEE Transactions on Plasma Science,2011,39(11),2894.
    29 Shigeta M.Journal of Physics D Applied Physics,2013,46(46),5401.
    30 Meillot E,Vincent S,Caruyer C,et al.Journal of Thermal Spray Technology,2009,18(5-6),875.
    31 Alaya M,Chazelas C,Vardelle A.Journal of Thermal Spray Technology,2016,25(1-2),36.
    32 Mentel J,Heberlein J.Journal of Physics D Applied Physics,2010,43(2),3002.
    33 Semenov I L,Krivtsun I V,Reisgen U.Journal of Physics D Applied Physics,2016,49(10),5204.
    34 Almeida N A,Cunha M D,Benilov M S.Journal of Physics D Applied Physics,2017,50(38),5203.
    35 Chazelas C,Trelles J P,Vardelle A.Journal of Thermal Spray Technology,2017,26(1-2),3.
    36 Zhou Q H.Numerical Simulation of Plasma Torch.Ph.D.Thesis,Fudan University,China,2009(in Chinese).周前红.直流电弧等离子体炬的数值模拟.博士学位论文,复旦大学,2009.
    37 Tan C,Wei Z Y,Wei P,et al.Journal of Xi’an Jiaotong University,2014,48(6),91(in Chinese).谭超,魏正英,魏培,等.西安交通大学学报,2014,48(6),91.
    38 Zhang N N,Lin D Y,Li Y L,et al.Journal of Iron and Steel Research(International),2017,24(3),306.
    39 Ardkani E S.Numerical and Experimental Study of the Arc Fluctuations in a DC plasma Torch.Ph.D.Thesis,Toronto University,Canada,2016.
    40 Shang S,Guduri B,Cybulsky M,et al.Journal of Physics D:Applied Physics,2014,47(40),5206.
    41 Saito H,Nakane Y,Fujino T,et al.Journal of Fluid Science & Technology,2016,11(4),JFST0024.
    42 Kanta A F,Planche M P,Montavon G,et al.Surface & Coatings Technology,2010,204(9),1542.
    43 Zhang H,Hu S,Wang G.Surface & Coatings Technology,2006,201(3-4),886.
    44 Wei P,Wei Z,Zhao G,et al.Heat & Mass Transfer,2016,52(9),1739.
    45 Feng L J,Cao K B,Lei A L.Hot Working Technology,2006,35(11),46(in Chinese).冯拉俊,曹凯博,雷阿利.热加工工艺,2006,35(11),46.
    46 Tan C,Wei Z Y,Wei P,et al.Journal of Propulsion Technology,2016,37(5),930(in Chinese).谭超,魏正英,魏培,等.推进技术,2016,37(5),930.
    47 Zhang W,Zheng L L,Zhang H,et al.Plasma Chemistry & Plasma Processing,2007,27(6),701.
    48 Chen D,Wang Y,Bai Y,et al.Journal of Inorganic Materials,2015,30(1),65.陈丹,王玉,白宇,等.无机材料学报,2015,30(1),65.
    49 Alavi S,Passandideh-Fard M,Mostaghimi J.Journal of Thermal Spray Technology,2012,21(6),1278.
    50 Zhang Y,Xu J N,Han C C,et al.Materials Science and Engineering of Powder Metallurgy,2017,22(3),313(in Chinese).张勇,徐建宁,韩成才,等.粉末冶金材料科学与工程,2017,22(3),313.
    51 Zhang Y,Matthews S,Hyland M.Journal of Physics D Applied Physics,2017,50(27),5601.
    52 Zhang Y,Matthews S,Hyland M.International Journal of Heat & Mass Transfer,2017,115,488.
    53 Kang C W,Tan J K,Pan L,et al.Applied Surface Science,2011,257(24),10363.
    54 El-Hadj A A,Zirari M,Bacha N.Applied Surface Science,2010,257(5),1643.
    55 Zhang M Y,Zhang H,Zheng L L.International Journal of Heat & Mass Transfer,2008,51(13),3410.
    56 Li B X,Li X H,Chen M.Physics of Fluids,2017,29(1),2003.
    57 Danouni S,El-Hadj A A,Zirari M,et al.Applied Surface Science,2016,371,213.
    58 Xiong H B,Zhu J.Journal of Hydrodynamics Ser B,2010,22(5),150.
    59 Yokoi K.Soft Matter,2011,7(11),5120.
    60 Tran A T T,Hyland M M.Journal of Thermal Spray Technology,2010,19(1-2),11.
    61 Tabbara H,Gu S.International Journal of Heat & Mass Transfer,2012,55(7-8),2081.
    62 Kumar A,Gu S,Tabbara H,et al.Surface & Coatings Technology,2013,220(15),164.
    63 Zhang Y,Matthews S,Tran A T T,et al.Surface & Coatings Technology,2016,307,807.
    64 Zirari A,El-Hadj A,Bacha N.Applied Surface Science,2010,256(11),3581.
    65 Liu H,Jazi H R S,Bussmann M,et al.Acta Materialia,2009,57(20),6013.
    66 Fukanuma H,Huang R,Tanaka Y,et al.Journal of Thermal Spray Technology,2009,18(5-6),965.
    67 Zheng Y Z,Li Q,Zheng Z H,et al.Applied Surface Science,2014,317,526.
    68 Xing Y,Jiang C,Hao J,et al.Reviews on Advanced Materials Science,2013,33,276.
    69 Liao Y M,Zheng Y Z,Zheng Z H,et al.Applied Physics A,2016,122(7),654.
    70 Zheng Z H,Li Q.Materials For Mechanical Engineering,2015,39(12),75(in Chinese).郑振环,李强.机械工程材料,2015,39(12),75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700