用户名: 密码: 验证码:
屯兰矿区含瓦斯煤微结构定量表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative Characterization of Microstructure of Gas-bearing Coal in Tunlan Mining Area
  • 作者:李江涛 ; 梁文勖 ; 贺志宏
  • 英文作者:LI Jiang-tao;LIANG Wen-xu;HE Zhi-hong;School of Resources & Civil Engineering,Northeastern University;Shenyang Research Institute,China Coal Technology and Engineering Group;State Key Laboratory of Coal Mine Safety Technology;Xishan Electricity Group Co.Ltd.;
  • 关键词:含瓦斯煤 ; 微结构 ; 定量表征 ; 屯兰矿区
  • 英文关键词:gas-bearing coal;;microstructure;;quantitative characterization;;Tunlan mining area
  • 中文刊名:DBDX
  • 英文刊名:Journal of Northeastern University(Natural Science)
  • 机构:东北大学资源与土木工程学院;煤科集团沈阳研究院有限公司;煤矿安全技术国家重点实验室;西山煤电(集团)有限责任公司;
  • 出版日期:2019-06-15
  • 出版单位:东北大学学报(自然科学版)
  • 年:2019
  • 期:v.40;No.345
  • 基金:国家大型油气田及煤层气开发科技重大专项(2016ZX05045-004-001);; 山西焦煤重大技术攻关项目
  • 语种:中文;
  • 页:DBDX201906023
  • 页数:5
  • CN:06
  • ISSN:21-1344/T
  • 分类号:129-133
摘要
为了揭示含瓦斯煤微结构对瓦斯运移的意义,对屯兰矿区太原组含煤岩系不同埋藏深度7个煤样品进行了X射线衍射(XRD)定量表征,结合布拉格方程式,计算出煤微晶结构参数.研究结果表明,随着煤化程度增加,含瓦斯煤XRD图谱中(002)峰不对称性逐渐减弱,对应的延展长度(L_a)和堆砌高度(L_c)逐渐增加而层间距(d_(002))却减少;结合所建立的煤物质的单位体积数学模型,发现含瓦斯煤透气性系数、孔隙度与有序相体积之间具有显著的相关性,进而提出屯兰矿区深部煤层发生瓦斯突出的潜势比浅部煤层的高,因此需要加强对深部煤层瓦斯突出的预防工作.
        In order to reveal the significance of gas-bearing coal to gas migration,XRD quantitative characterization was carried out on 7 coal samples with different burial depths in Taiyuan Formation of Tunlan Mining Area,and the structural parameters of coal microcrystals were calculated by combining Bragg equation. The results show that with the increase of coalification,the asymmetry of peak( 002) gradually decreases,while the corresponding extension length( L_a) and stacking height( L_c) gradually increase while the interval between layers( d_(002))decreases. Combined with the mathematical model of coal per unit volume,it is found that there is a significant correlation between permeability coefficient,porosity and ordered phase volume coal. Furthermore,it is proposed that the potential of gas outburst in deep coal seam in Tunlan mining area is higher than that in shallow coal seam,so it is necessary to strengthen the prevention of gas outburst in deep coal seam.
引文
[1] Ul’Yanova E V,Malinnikova O N,Burchak A V,et al. Gas content and structure of coal in donets basin[J]. Journal of Mining Science,2018, 53(4):655-662.
    [2] Zhou S,Liu D,Cai Y,et al. Comparative analysis of nanopore structure and its effect on methane adsorption capacity of Southern Junggar coalfield coals by gas adsorption and FIBSEM tomography[J]. Microporous and Mesoporous Materials,2018, 272:117-128.
    [3] Mastalerz M,Drobniak A,Strapoc D,et al. Variations in pore characteristics in high volatile bituminous coals:implications for coal bed gas content[J]. International Journal of Coal Geology,2008,76(3):205-216.
    [4] Zhang R,Liu S,Bahadur J, et al. Changes in pore structure of coal caused by coal-to-gas bioconversion[J]. Scientific Reports,2017,7(1):3840-3845.
    [5] Nie B,Liu X,Yang L,et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel,2015,158:908-917.
    [6] Fernández J,González F,Pesquera C,et al. Qualitative and quantitative characterization of a coal power plant waste by TG/DSC/MS,XRF and XRD[J]. Journal of Thermal Analysis and Calorimetry,2016,125(2):703-710.
    [7] Hazra B,Varma A K,Bandopadhyay A K,et al. FTIR,XRF,XRD and SEM characteristics of Permian shales, India[J].Journal of Natural Gas Science and Engineering,2016,32(3):239-255.
    [8] Saikia B K,Boruah R K,Gogoi P K. X-ray(Radial Distribution Function,RDF)and FT-IR analysis of high sulphur Tirap(India)coal[J]. Journal of the Energy Institute,2016,82(2):106-108.
    [9] Arif M,Jones F,Barifcani A,et al. Influence of surface chemistry on interfacial properties of low to high rank coal seams[J]. Fuel,2017, 194:211-221.
    [10] Saikia B K,Boruah R K,Gogoi P K. FT-IR and XRD analysis of coal from Makum coalfield of Assam[J]. Journal of Earth System Science,2007,116(6):575-579.
    [11] Sonibare O O,Haeger T,Foley S F. Structural characterization of Nigerian coals by X-ray diffraction,Raman and FTIR spectroscopy[J]. Energy,2010,35(12):5347-5353.
    [12] Baysal M,Yürüm A,Yildiz B, et al. Structure of some western Anatolia coals investigated by FTIR,Raman,C-13 solid state NMR spectroscopy and X-ray diffraction[J]. International Journal of Coal Geology,2016, 163(7):166-176.
    [13]李小明,曹代勇,张守仁,等.不同变质类型煤的XRD结构演化特征[J].煤田地质与勘探,2003,31(3):5-7.(Li Xiao-ming,Cao Dai-yong,Zhang Shou-ren,et al. Study of the XRD parameter evolution of coal of different metamorphism types[J]. Coal Geology&Exploration, 2003,31(3):5-7.)
    [14]李霞,曾凡桂,王威,等.低中煤级煤结构演化的XRD表征[J].燃料化学学报, 2016, 44(7):777-783.(Li Xia,Zeng Fan-gui,Wang Wei, et al. XRD characterization of structural evolution in low-middle rank coals[J]. Journal of Fuel Chemistry&Technology,2016,44(7):777-783.)
    [15]姜波,秦勇.高温高压实验变形煤XRD结构演化[J].煤炭学报, 1998,23(2):188-193.(Jiang Bo,Qin Yong. XRD analysis of the structural evolution of deformed coal sample tested under high temperature and high confined pressure[J]. Journal of China Coal Society,1998,23(2):188-193.)
    [16]吴盾,孙若愚,刘桂建,等.岩浆接触变质煤结构特征的谱学研究[J].光谱学与光谱分析,2013,33(10):2861-2864.(Wu Dun,Sun Ruo-yu,Liu Gui-jian,et al. The spectrum studies of structure characteristics in magma contact metamorphic coal[J]. Spectroscopy and Spectral Analysis,2013,33(10):2816-2864.)
    [17]司加康.马兰8号煤大分子结构模型构建及分子模拟[D].太原:太原理工大学,2014.(Si Jia-kang. Macromolecular structure model construction and molecular simulation of Malan8 coal[D]. Taiyuan:Taiyuan University of Technology,2014.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700