用户名: 密码: 验证码:
纳米NiO-Y复合阴极材料的制备及微生物电解池催化产氢性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and electrochemical evaluation of nano-NiO-Y composite cathode material for hydrogen evolution in microbial electrolysis cell
  • 作者:王改 ; 薄琼 ; 杨冬 ; 李玉鹏 ; 赵煜 ; 葛超
  • 英文作者:WANG Gai;BO Qiong;YANG Dong-hua;LI Yu-peng;ZHAO Yu;GE Chao;College of Chemistry and Chemical Engineering,Taiyuan University of Technology;College of Textile Engineering,Taiyuan University of Technology;
  • 关键词:纳米NiO-Y复合材料 ; 多级孔 ; 活性位 ; 微生物电解池 ; 阴极材料
  • 英文关键词:nano-NiO-Y composites;;multiple porous;;active sites;;microbial electrolysis cell;;cathode materials
  • 中文刊名:RLHX
  • 英文刊名:Journal of Fuel Chemistry and Technology
  • 机构:太原理工大学化学化工学院;太原理工大学轻纺工程学院;
  • 出版日期:2019-06-25 14:08
  • 出版单位:燃料化学学报
  • 年:2019
  • 期:v.47
  • 基金:山西省自然科学基金(201701D121028);; 国家自然科学基金青年基金(21802101)资助~~
  • 语种:中文;
  • 页:RLHX201906014
  • 页数:7
  • CN:06
  • ISSN:14-1140/TQ
  • 分类号:132-138
摘要
在Y分子筛的溶胶反应体系中加入碳球,经老化、水热晶化反应得到纳米Y分子筛,通过等体积浸渍(incipientw etness impregnation,IWI)方式负载镍盐前驱体,经焙烧制备纳米NiO-Y复合材料,采用XRD、SEM、TEM、XPS、TG-DTG和N_2吸附-脱附等手段对其物理化学性质进行表征。结果表明,合成的NiO-Y复合材料样品的晶粒粒径为500 nm,具有微-介孔多级孔道结构。总比表面积达到774.3 m~2/g,孔容为0.495 cm~3/g,有利于暴露更多的活性位。通过线性扫描和塔菲尔曲线电化学测试评价发现,当镍盐负载量为30%(质量分数)时,纳米NiO-Y复合材料作为微生物电解池阴极具有较高的电催化活性。在运行周期内,样品的最大析氢电流密度达到22.87 A/m~2,产气总量中H_2含量占73.71%,产氢效率为0.393 m~3/(m~3·d),与Pt/C阴极产氢效率相近。
        Nano Y zeolites were synthesized by adding carbon spheres into the synthesis sol of Y zeolites subjected to aging and hydrothermal crystallization; nickel-salt precursors were then loaded by using an incipientwetness impregnation( IWI) method. After calcination,the nano-NiO-Y composite were then characterized by means of XRD,SEM,TEM,XPS,TG-DTG,and N_2 adsorption-desorption techniques and its performance as the cathode material for hydrogen evolution in microbial electrolysis cell was then investigated. The results show that the nano-NiO-Y composite has a crystal size of 500 nm of size and multiple porous structure including micro and mesopores; the total surface area and pore volume of nano-NiO-Y composites are 774. 3 m~2/g and0.495 cm~3/g,respectively. The electrochemical tests of linear scanning voltammetry and Tafel plots show that as microbial electrolytic cell( MEC) cathode,the nano-NiO-Y composite with a nickel-salt loading of 30% exhibits high electrocatalytic activity. In a continuous operation cycle,the largest hydrogen evolution current density of the nano-NiO-Y composites reaches 22.87 A/m~2,and the H_2 content is about 73.71% in total gas. The hydrogen production efficiency is 0.393 m~3/( m~3·d),comparable to that of Pt/C cathode.
引文
[1]韩成,雷永鹏,王应德.纳米异质结光催化材料制取太阳能燃料研究进展[J].无机材料学报,2015,30(11):1121-1130.(HAN Cheng,LEI Yong-peng,WANG Ying-de.Rent progress on nano-heterostructure photocatalysts for solar fuels generation[J].J Inor Mater,2015,30(11):1121-1130.)
    [2]WANG B,WANG Y D,LEI Y P,WANG B,WU N,SHI Q,LI Q.In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2nanofibers for efficient photocatalytic H2 production and degradation[J].Nano Res,2015,8(4):1199-1209.
    [3]CHENG S,LODAN B E.High hydrogen production rate of microbial electrolysis cell(MEC)with reduced electrode spacing[J].Bioresour Technol,2011,102(3):3571-3574.
    [4]ZHANG K,KIM J K,PARK B,QIAN S F,JIN B J,SHENG X W,ZENG H B,SHIN H J,OH S H,LEE C L,PARK J H.Defect-induced epitaxial growth for efficient solar hydrogen production[J].Nano Lett,2017,17(11):6676-6683.
    [5]ZHAO W,FIERRO V,FERNNDEZ-HUERTA N,IZQUIERDO M T,CELZARD A.Hydrogen uptake of high surface area-activated carbons doped with nitrogen[J].Int J Hydrogen Energy,2013,38(25):10453-10460.
    [6]GRUBLE T,DORL,HOFFRICHTER A,HOMBACH L E,RATHS S,ROBINIUS M,NOBIS M,SCHIEBAHN S,TIETZE V,SCHNETTLERA,WALTHER G,STOLTEN D.An option for stranded renewables:Electrolytic-hydrogen in future energy systems[J].Sustainable Energy Fuels,2018,2(5):1500-1515.
    [7]KUMAR G,LIN C Y.Biogenic hydrogen conversion of de-oiled Jatropha waste(DJW)via anaerobic sequencing batch reactor operation:Process performance,microbial insights and CO2 reduction efficiency[J].Sci World J,2014,1-9.
    [8]SIRISINUDOMKIT P,IAMPRASERTKUN P,KRITTAYAVATHANANON A,PETTONG T,DITTANET P,KIDKHUNTHOD P,SAWANGPHRUK M.Hybrid energy storage of battery-type nickel hydroxide and supercapacitor-type graphene:Redox additive and charge storage mechanism[J].Sustainable Energy Fuels,2017,1:275-279.
    [9]WANG B,WANG Y D,LEI Y P,WU N,GOU Y Z,HAN C,XIE S,FANG D.Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production[J].Nano Res,2016,9(3):886-898.
    [10]KHAIRY M,ELSAFTY S A.Mesoporous NiO nanoarchitectures for electrochemical energy storage:Influence of size,porosity,and morphology[J].Rsc Adv,2013,3(45):23801-23809.
    [11]ZHOU Y X,LEI Y P,WANG D S,CHEN C,PENG Q,LI Y D.Ultra-thin Cu2S nanosheets:Effective cocatalysts for photocatalytic hydrogen production[J].Chem Commun,2015,51(68):13305-13308.
    [12]DAI H Y,YANG H M,LIU X,JIAN X,LIANG Z H.Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J].Fuel,2016,174:251-256.
    [13]LU L,XING G F,XIE T H,REN N Q,LOGAN B E.Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells[J].Biosens Bioelectron,2010,25(12):2690-2695.
    [14]DONG Z S,ZHAO Y,FAN L,WANG Y X,WANG J W,ZHANG K.Simultaneous sulfide removal and hydrogen production in a microbial electrolysis cell[J].Int J Electrochem Sci,2017,12(11):10553-10566.
    [15]ALHAJRI N,ANJUM D,TAKANABE K.Molybdenum carbide-carbon nanocomposites synthesized from a reactive template for electrochemical hydrogen evolution[J].J Mater Chem A,2014,2(27):10548-10556.
    [16]CHEN W F,WANG C H,SASAKI K,MARINKOVIC N,XU W,MUCKERMAN J T,ZHU Y,ADZIC R R.Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production[J].Energy Environ Sci,2013,6(3):943-951.
    [17]麹永亮.Y型分子筛制备过程的技术改造研究[D].北京:北京化工大学,2015.(QU Yong-liang.Technological innovation research of Y zeolite preparation process[D].Beijing:Beijing University of Chemical Technology,2015.)
    [18]胡丽,杨冬花,赵煜,董志帅,王改,薄琼.NiY分子筛的合成及在微生物电解池阴极的析氢性能研究[J].燃料化学学报,2018,46(5):106-113.(HU Li,YANG Dong-hua,ZHAO Yu,DONG Zhi-shuai,WANG Gai,BO Qiong.Synthesis of NiY zeolite for hydroden evolution performance study in cathode of microbial electrolysis cell[J].J Fuel Chem Technol,2018,46(5):106-113.)
    [19]ZHENG Z L,SUN C,DAI R,WANG S Y,WU X,AN X,XIE X M.Organotemplate-free synthesis of hollow Beta zeolite supported Ptbased catalysts for low-temperature ethanol steam reforming[J].Catal Sci Technol,2016,6(17):6472-6475.
    [20]ZHOU W W,ZHOU Y S,WEI Q W,DING S J,JIANG S J,ZHANG Q,LIU M F.Continuous synthesis of mesoporous Y zeolites from normal inorganic aluminosilicates and their high adsorption capacity for dibenzothiophene(DBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT)[J].Chem Eng J,2017,330(8):605-615.
    [21]刘爱元,张溪文,韩高荣.溶胶凝胶旋涂法制备NiO薄膜及其电致变色性能[J].材料科学与工程学报,2010,28(6):896-899.(LIU Ai-yuan,ZHANG Xi-wen,HAN Gao-rong.Preparation and properties of NiO films via sol-gel process and spin-coating[J].J Mater Sci Eng,2010,28(6):896-899.)
    [22]ZHENG Z L,YANG D H,LI T T,YIN X M,WANG S Y,WU X,AN X,XIE X M.A novel BEA-type zeolite core-shell multiple catalyst for hydrogen-rich gas production from ethanol steam reforming[J].Catal Sci Technol,2016,6(14):5427-5439.
    [23]任斌.基于碳球模板法的功能型纳米材料的合成与应用[D].重庆:重庆大学,2016.(REN Bin.Characterization and application of functional nanomaterials prepared by using carbon spheres as templates[D].Chongqing:Chongqing University,2016.)
    [24]李德宝,郗宏娟,侯博,林明桂,贾丽涛.一种小晶粒ZSM-22分子筛的制备方法:中国,105565339A[P].2016-05-11.(LI De-bao,XI Hong-Juan,HOU Bo,LIN Ming-gui,JIA Li-tao.A Preparation method of smallgrain ZSM-22 molecular sieve.CN,105565339A[P].2016-05-11.)
    [25]杨冬花,石宝宝,王新波,武正簧,窦涛,郑子良,代蓉.新型磷酸硅铝分子筛SAPO-53的合成与表征[J].燃料化学学报,2014,42(5):625-634.(YANG Dong-hua,SHI Bao-bao,WANG Xin-bo,WU Zheng-huang,DOU Tao,ZHENG Zi-liang,DAI Rong.Synthesis and characterization of a new type silicoaluminophophate SAPO-53 molecular sieves[J].J Fuel Chem Technol,2014,42(5):625-634.)
    [26]崔振珍,殷好勇,赵红挺,聂秋林.核壳结构氧化镍/碳微球的制备及葡萄糖传感性能[J].无机材料学报,2015,30(3):305-310.(CUI Zhen-zhen,YIN Hao-yong,ZHAO Hong-ting,NIE Qiu-lin.Preparation and glucose sensing property of core-shelled nikel oxide/carbon microspheres[J].J Inorg Mater,2015,30(3):305-310.)
    [27]ZHAO Q,ZHONG D,LIU L,LI D D,HAO G Y,LI J P.Facile fabrication of robust 3D Fe-NiSe nanowires supported on nickel foam as a highly efficient,durable oxygen evolution catalyst[J].J Mater Chem A,2017,5(28):14639-14645.
    [28]SOLEIMANI E,MOHAMMADI M.Synthesis,characterization and properties of polystyrene/NiO nanocomposites[J].J Mater Sci Mater Electron,2018,29(11):9494-9508.
    [29]代红艳,杨慧敏,刘宪,简选,郭敏敏,曹乐乐,梁镇海.MoS2/石墨烯复合阴极材料的制备及微生物电解池催化产氢性能[J].高等学校化学学报,2018,39(2):351-358.(DAI Hong-yan,YANG Hui-min,LIU Xian,JIAN Xuan,GUO Min-min,CAO Le-le,LIANG Zhen-hai.Preparation and electrochemical evaluation of MoS2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J].Chem J Chin Univ,2018,39(2):351-358.)
    [30]CHO G,KIM H,PARK Y S,HONG Y K,HA D H.Phase transformation of iron phosphide nanoparticles for hydrogen evolution reaction electrocatalysis[J].Int J Hydrogen Energy,2018,43(24):11326-11334.
    [31]LI Z C,MA J J,ZHOU Y,YIN Z G,TANG Y B,MA Y X,WANG D B.Synthesis of sulfur-rich MoS2,nanoflowers for enhanced hydrogen evolution reaction performance[J].Electrochim Acta,2018,283(1):306-312.
    [32]WANG A,LIU W,CHENG S,XING D F,ZHOU J Z,LOGAN B E.Source of methane and methods to control its formation in single chamber microbial electrolysis cells[J].Int J Hydrogen Energy,2009,34(9):3653-3658.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700