用户名: 密码: 验证码:
基于河岸带地球化学特征的河水-地下水交互边界识别——以广州市流溪河为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification of interaction boundary during the river-groundwater interactions based on geochemical characteristics of riparian zone: A case study in the Liuxi River
  • 作者:杨志刚 ; 高磊 ; 陈建耀 ; 梁作兵 ; 李绍恒 ; 李睿 ; 王卓微 ; 张艺芳 ; 张狄 ; 林韵
  • 英文作者:YANG Zhigang;GAO Lei;CHEN Jianyao;LIANG Zuobing;LI Shaoheng;LI Rui;WANG Zhuowei;ZHANG Yifang;ZHANG Di;LIN Yun;Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University;
  • 关键词:流溪河 ; 河水-地下水交互作用 ; 水化学特征 ; 交互边界识别
  • 英文关键词:Liuxi River;;river water-groundwater interactions;;hydrochemical characteristics;;identification of interaction boundary
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:中山大学地理科学与规划学院广东省城市化与地理环境空间模拟重点实验室;
  • 出版日期:2019-03-19 11:09
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(No.41771027,41701585,41611140112,41371055);; 广东省自然科学基金(No.2017A030310309);; 广州市科学研究计划项目(No.201510010300);; 中央高校基本科研业务费专项资金(No.17lgpy40);; 广东省水利科技创新项目(2018年度)
  • 语种:中文;
  • 页:HJXX201906015
  • 页数:10
  • CN:06
  • ISSN:11-1843/X
  • 分类号:122-131
摘要
河水-地下水交互作用对河流水质净化、流域水生态健康和河岸土地合理规划具有重要意义.本文以广州市流溪河为研究对象,实时监测河水和河岸带地下水基本理化指标并采集水样和土样进行水体主离子、氮形态、金属离子浓度、氘(δD)氧(δ~(18)O)同位素和土壤渗透系数(K)测试分析.结果表明:监测期间以河水侧向补给地下水为主,对地下水水位的影响范围在距河岸10 m内;距河岸1 m处地下水溶解氧(DO)浓度、电导率(EC)和氧化还原电位(ORP)变化明显,变异系数(n=7)分别为30.9%、42.0%和44.4%.河水和河岸带地下水水化学类型均为HCO_3-Ca型,受碳酸盐岩风化控制.河水入渗补给地下水初期,河岸带含水层向还原环境转化(ORP平均下降92.25 mV),非饱和带Mn氧化物发生还原性溶解,地下水中Mn~(2+)浓度逐渐增加并达最大值(0.52 mg·L~(-1));基于δD、δ~(18)O和Cl~-浓度的混合模型估算的河水对距河岸5 m处地下水的贡献率分别为10.4%、11.6%和11.5%,表明监测断面河水-地下水交互边界约在距河岸5 m处.
        River-groundwater interaction in riparian zone is of great importance for purification of river water, aquatic ecological health and optimal planning of riparian soils. The Liuxi River was selected to monitor physicochemical parameters of river water and groundwater, which were collected at an interval of 4 hours for the determination of major ions, nitrogen forms, metal ions, δ~(18)O and δD. The results show that the lateral recharge of river water to groundwater predominated during the monitoring periods, leading to the water table of groundwater being fluctuated within the distance of 10 m from the river bank. Distinct changes in DO concentration, EC, and ORP were observed with coefficients of variation(n=7) of 30.9%, 42.0%, and 44.4%, respectively, at site with a distance of 1 m from the river bank. The hydrochemical type of river water and groundwater in riparian zone is HCO_3-Ca, resulting from the weathering of carbonate rocks. Early infiltration of river water induced a reducing environment with an decreasing ORP in the aquifer of riparian zone. Furthermore, Mn~(2+) concentration in groundwater gradually increased due to reductive dissolution of Mn oxides. At the distance of 5 m from the river bank, the contribution rates of river water to groundwater were estimated as 10.4%, 11.6% and 11.5% by a two end-members mixing model based on δD, δ~(18)O, and Cl~- concentration, indicating that the boundary of river-groundwater interaction in riparian zone is approximate 5 m far from the riverbank.
引文
Benner S G,Smart E W,Moore J N.1995.Surface-Groundwater interaction,Bow Creek,Montana[J].Environ-mental Science & Technology,29:1789-1795
    陈吉泉.1996.河岸植被特征极其在生态系统和景观中的作用[J].应用生态学报,7(4):439-448
    蔡悦幸,陆希,杨崧.2018.华南地区前后汛期极端降水事件对比分析[J].中山大学学报(自然科学版),57(1):83-92
    Danczak R E,Sawyer A H,Williams K H,et al.2016.Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments[J].Journal of Geophysical Research:Biogeosciences,121(12):2976-2987
    邓红兵,王青春,王庆礼.2001.河岸植被缓冲带与河岸带管理[J].应用生态学报,12(6):951-954
    Farnsworth C E,Hering J G.2010.Hyrous manganese oxide doped gel probe sample for measuring In situ reductive dissolution rates.1 Laboratory development[J].Environmental Science & Technology,44:34-40
    Fette M,Kipfer R,Schubert C J,et al.2005.Assessing river-groundwater exchange in the regulated Rhone River (Switzerland) using stable isotopes and geochemical tracers[J].Applied Geochemistry,20(4):701-712
    Francis B A,Francis L K,Cardenas M B.2010.Water table dynamics and groundwater-surface water interaction during filling and draining of a large fluvial island due to dam-induced river stage fluctuations[J].Water Resources Research,46(7):751-760
    Gaillardet J,Dupre B,Louvat P,et al.1999.Global silicate weathering and CO2 consumption rates deduced from the chemis-try of large rivers[J].Chemical Geology,159(1/2/3/4):3-30
    高磊,陈建耀,柯志庭,等.2013.东莞石马河流域重金属污染及生态毒性的时空差异[J].环境科学,34(8):3079-3087
    高磊,陈建耀,王江,等.2014.东莞石马河沿岸土壤重金属污染及生态毒性研究[J].土壤学报,51(3):538-546
    Gao L,Chen J Y,Tang C Y,et al.2015.Distribution,migration and potential risk of heavy metals in the Shima River catchment area,South China[J].Environmental Science:Processes & Impacts,17:1769-1782
    Gao L,Wang Z W,Shan J J,et al.2016.Distribution characteristics and sources of trace metals in sediment cores from a trans-boundary watercourse:An example from the Shima River,Pearl River Delta[J].Ecotoxicology and Environmental Safety,134:186-195
    Gbbis R J.1970.Mechanisms contronlling world water chemistry[J].Science,170:1088-1090
    广东省地质局.1981.区域水文地质普查报告[R].广州:广东省地质局
    广东省统计局.2017.广东统计年鉴[M].北京:中国统计出版社
    广东省水利水电科学研究院.2013.从化市水资源综合规划报告[R].广州:广东省水利水电科学研究院
    Herzog S P,Higgins C P,McCray J E.2015.Engineered streambedsfor induced hyporheic flow:enhanced removal and metals from urban treams[J].Journal of Environmental Engineering,142(1):542-553
    Hill A R,Labadia C F,Sanmugadas K.1998.Hyporheic zone hydrology and nitrogen dynamics inrelation to the streambed topography of a N-rich stream[J].Biogeochemistry,42(3):285-310
    Hucks Sawyer A,Bayani Cardenas M,Bomar A,et al.2009.Impact of dam operations on hyporheic exchange in the riparian zone of a regulated river[J].Hydrological Processes,23(15):2129-2137
    胡春华,周文斌,夏思奇,等.2011.鄱阳湖流域水化学主离子特征及其来源分析[J].环境化学,30(9):1620-1626
    Irvine D J,Lautz L K.2015.High resolution mapping of hyporheiclimi-tations[J].Journal of Hydrology,524:137-146
    李标.2007.广州流溪河主要水环境控制断面水质达标研究[D].南京:河海大学
    Meybeck M.1983.Atmospheric inputs and river transport of dissolved substances[A]//Webb B W (Ed.).Dissolved Loads of Rivers and Surface Water Quantity/Quality Relationships[C].Hamburg:IAHS Publ
    Naranjo R C,Niswonger R G,Stone M.2012.The use of multiobjective calibration and regional sensitivit analysis in simulating hyporheicexchange[J].Water Resources Research,48(1):153-161
    潘俊,冷特,常玉辉,等.2013.平原型水库地表水-地下水交互带特性研究—以石佛寺水库工程为例[J].沈阳建筑大学学报(自然科学版),29(6):1116-1121
    Petrunic B M,MacQuarrie K T B,Al T A.2005.Reductive dissolution of Mn oxides in river-recharged aquifer:a laboratory column study[J].Journal of Hydrology,301:163-181
    Pretty J L,Hildrew A G,Trimmer M.2013.Nutrient dynamics in relation to surface-suhydrological exchange in a groundwater fed chalk stream[J].Journal of Hydrolo,30(1/2):84-100
    沈照理.1993.水文地球化学基础[M].北京:地质出版社
    Su X S,Xu W.2014.In situ infiltration test using a reclaimedabandoned riverbed:managed aquifer recharge in Shijiazhuang City,China[J].Environmental Earth Sciences,71(12):5017-5025
    滕彦国,左锐,王金生.2007.地表水-地下水的交错带及其生态功能[J].地球与环境,35(1):1-8
    王卓微,赵新锋,庞园,等.2017.流溪河流域地下水水化学时空特征及源辨析[J].环境化学,36(12):2701-271
    魏复盛,毕彤,齐文启,等.2002.水和废水检测分析方法(第四版)[M].北京:中国环境科学出版社
    Vervier P,Bonvallet-gar A Y S,Sauvage S,et al.2009.Influence of the hyporheic zone on the phosphorus dynamics of a large gravel-bed river,Garonne River,France[J].Hydrological Processes,23(12):1801-1812
    谢丽纯,陈建耀,董林垚,等.2011.珠江三角洲滨海小流域离子化学特征及来源分析[J].热带地理,31(2):138- 145
    解晨骥,高全洲,陶贞,等.2013.东江流域化学风化对大气 CO2的吸收[J].环境科学学报,33(8):2123-213
    禤映雪,唐常源,曹英杰,等.2018.北江流域水化学时空变化及化学风化特征[J].中国环境科学,26(5):122-130
    夏继红,陈永明,王为木,等.2013.河岸带潜流层动态过程与生态修复[J].水科学进展,24(4):589-597
    杨平恒,张宇,王建力,等.2017.水位变化影响下的河水-地下水侧向交互带地球化学动态[J].水科学进展,28(2):293-301
    张宇,王建力,杨平恒,等.2017.河水-地下水侧向交互流运动机制[J].中国科学:地球科学,47(11):1349-1356
    张宇,杨平恒,王建力,等.2016.河水-地下水侧向交互带水化学特征:以重庆市马鞍溪为例[J].环境科学,37(8):2478-2485
    周嘉欣,丁永建,曾国雄,等.2014.疏勒河上游地表水水化学主离子特征及其控制因素[J].环境科学,35(9):3315-3324
    朱蓓,赵坚,陈孝兵,等.2015.水库运行对下游河岸潜流带水位-温度影响研究[J].水利学报,46(11):1337-1343

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700