用户名: 密码: 验证码:
磷酸钒锂正极材料掺杂改性研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress in doping of lithium vanadium phosphate cathode materials
  • 作者:董虎林 ; 包海萍 ; 汪浩 ; 彭建洪
  • 英文作者:Hulin DONG;Haiping BAO;Hao WANG;Jianhong PENG;College of Physics and Electronic Information Engineering, Qinghai University of Nationalities;College of Materials Science and Engineering, Beijing University of Technology;
  • 关键词:磷酸钒锂 ; 锂离子电池 ; 正极材料 ; 掺杂
  • 英文关键词:lithium vanadium phosphate;;lithium ion battery;;cathode material;;doping
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:青海民族大学物理与电子信息工程学院;北京工业大学材料科学与工程学院;
  • 出版日期:2019-01-08 09:45
  • 出版单位:过程工程学报
  • 年:2019
  • 期:v.19
  • 基金:教育部春晖计划资助项目(编号:Z2014012);; 青海民族大学“纳米材料与技术”科研创新团队建设经费资助项目
  • 语种:中文;
  • 页:HGYJ201903006
  • 页数:9
  • CN:03
  • ISSN:11-4541/TQ
  • 分类号:44-52
摘要
面对日趋严重的能源问题和环境问题,迫切需要寻找新的清洁能源以解决传统清洁能源(太阳能、潮汐能、风能等)转换效率低、能量储存难度大等问题。锂离子电池因绿色环保、安全性能好、放电容量高、循环寿命长、便于携带等优点受到研究者青睐,其中Li3V2(PO4)3 (LVP)锂离子电池因其较高的放电比容量和电压平台、良好的安全性能、便携性、环保型、低成本等优点成为备受关注的锂离子电池正极材料之一。由于LVP自身结构的缺陷,导致其离子导电率和电子导电率较低,不利于发挥其理论容量高、倍率性能优等特点。目前多数关于锂离子电池正极材料LVP的改性研究中,离子掺杂是最有效的方法之一。离子掺杂一方面可以优化材料的晶格参数,提高充放电过程中晶体结构的稳定性,改善其循环寿命;另一方面有助于增大晶格间隙,扩大离子的扩散通道,从而有利于提高离子扩散系数,改善电极材料的离子导电率。在目前的研究中,LVP的离子掺杂方法主要包括锂位掺杂、钒位掺杂、阴离子掺杂和多位掺杂四种,其中钒位掺杂包括钒位单掺杂和共掺杂。本工作阐述了近年来LVP离子掺杂改性的研究进展,并对该材料未来的发展趋势进行了展望。
        A new clean-energy is urgently needed to replace the traditional clean-energy(such as solar energy, tidal energy, and wind energy) with the problem of low conversion efficiency and more difficult energy storage in the face of the rigorous energy and environmental problems. The lithium ion battery is favored by researchers because of its green environmental protection, good safety performance, high discharge capacity, long cycle life and easy to carry,especially Li3 V2(PO4)3(LVP) lithium-ion battery. The LVP is one of the cathode materials of Li-ion batteries attracted most attention due to its higher discharge capacity, higher voltage platform, good safety performance, portability,environmental protection and low cost. However, the instinct drawbacks of monoclinic structure lead to low ionic conductivity and electronic conductivity, which seriously degrade the electrochemical properties of the materials. At present, among the various modified methods, ions doping is one of the most effective ways. The ions doping can optimize the lattice parameters of LVP, enhance the stability of the crystal structure in the process of charging and discharging, and improve the cycle life. In addition, it can also increase the ionic diffusion coefficient and perfect the ionic conductivity via enlarging interstitial void and diffusion path of ions. In present studies, the ions doping of LVP mainly includes doping in Li sites, doping in V sites, anion doping and multibit doping. Meanwhile, the doping in V sites of LVP also includes single doping and co-doping. In this work research processes of ions doping for enhancing the electrochemical performance of Li3 V2(PO4)3 were summarized and the development prospect of this material was also reviewed.
引文
[1]Sato M,Tajimi S,Okawa H,et al.Preparation of iron phosphate cathode material of Li3Fe2(PO4)3 by hydrothermal reaction and thermal decomposition processes[J].Solid State Ionics,2002,152:247-251.
    [2]Cahill L S,Chapman R P,Britten J F,et al.Li NMR and twodimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)3[J].Journal of Physical Chemistry C,2006,110(14):7171-7177.
    [3]Yasuhara S,Yasui S,Taniyama T,et al.High-rate performance of LiCoO2 epitaxial thin films with various surface conditions[J].2018,3(22):1243-1247.
    [4]Lee D,Ahn S,Lee D,et al.Investigation of laser cutting width of LiCoO2 coated aluminum for lithium-ion batteries[J].Applied Sciences,2017,7(9):914:1-12.
    [5]李运姣,王晨生,孙召明.锂离子电池正极材料LiCoO2和Li Ni O2的研究进展[J].稀有金属与硬质合金,2002,30(1):38-41.Li Y J,Wang C S,Sun Z M.Development of LiCoO2 and LiNiO2lithium-ion battery anode material[J].Rare Metals and Cemented Carbides,2002,30(1):38-41.
    [6]Zeng X,Wu J,Hu Q.Effects of magnesium and chlorine co-doping on the structural and electrochemical performance of the spinel Li Mn2O4 cathode materials[J].Micro&Nano Letters,2016,11(12):789-791.
    [7]Gotcu P,Seifert H J.Thermophysical properties of LiCoO2-LiMn2O4blended electrode materials for Li-ion batteries[J].Physical Chemistry Chemical Physics,2016,18(15):10550-10562.
    [8]Vu A,Stein A,Lithium iron phosphate spheres as cathode materials for high power lithium ion batteries[J].Journal of Power Sources,2014,245:48-58.
    [9]Wang J J,Yang J L,Tang Y J,et al.Size-dependent surface phase change of lithium iron phosphate during carbon coating[J].Nature Communications,2014,5:1-8.
    [10]Hameed A S,Reddy M V V,Chowdari B V R,et al.Preparation of RGO wrapped magnetite nanocomposites and its energy storage properties[J].RSC Advances,2014,4(109):64142-64150.
    [11]Sun C,Rajasekhara S,Dong Y,et al.Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries[J].ACS Applied Materials&Interfaces,2011,3(9):3772-3776.
    [12]Wang S L,Zhang Z X,Deb A,et al.Nanostructured Li3V2(PO4)3/Ccomposite as high-rate and long-life cathode material for lithium ion batteries[J].Electrochimica Acta,2014,143:297-304.
    [13]Xu J T,Chou S L,Zhou C F,et al.Three-dimensional-network Li3V2(PO4)3/C composite as high rate lithium ion battery cathode material and its compatibility with ionic liquid electrolytes[J].Journal of Power Sources,2014,246:124-131.
    [14]Lim C H,Jung Y H,Su J Y,et al.Encapsulation of lithium vanadium phosphate in reduced graphene oxide for a lithium-ion battery cathode with stable elevated temperature performance[J].Electrochimica Acta,2017,253(1):208-217.
    [15]Xia Y,Shi S,Li C G,et al.Electrochemical properties of Sn-doped Li3V2(PO4)3 cathode material synthesized via a citric acid assisted sol-gel method[J].Journal of Alloys and Compounds,2015,652:298-306.
    [16]Li Y J,Cao M L,Zhou C X,et al.A novel synthesis of gadoliniumdoped Li3V2(PO4)3/C with excellent rate capacity and cyclability[J].RSC Advances,2016,6(34):28624-28632.
    [17]Ren M M,Zhou Z,Li Y Z,et al.Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries[J].Journal of Power Sources,2006,162(2):1357-1362.
    [18]Chen Q Q,Qiao X C,Wang Y B,et al.Electrochemical performance of Li3-xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries[J].Journal of Power Sources,2012,201:267-273.
    [19]李玲芳,韩绍昌,范长岭,等.以溶液法制备的钠掺杂锂离子电池正极材料Li3-xNaxV2(PO4)3/C[J].化工进展,2018,(1):201-205.Li L F,Han S C,Fan C L,et al.Sodium doped cathode material of lithium ion batteries Li3-xNaxV2(PO4)3/C synthesized by solution method[J].Chemical Industry and Engineering Progress,2018,(1):201-205.
    [20]Mao J L,Shao L Y,Li P,et al.Comparison of phase composition,morphology and electrochemical property for Li3-xNaxV2(PO4)3(x=0.5,1.5 and 2.0)as lithium storage cathode materials[J].Electrochimica Acta,2015,173:96-104.
    [21]Yin W M,Zhang T T,Zhu Q,et al.Synthesis and electrochemical performance of Li3-xNaxV2(PO4)3/C composite cathode materials for lithium-ion batteries[J].Transactions of Nonferrous Metals Society of China,2015,25(6):1978-1985.
    [22]Zhang Y,Nie P,Shen L,et al.ChemInform abstract:rhombohedral NASICON-structured Li2Na V2(PO4)3 with single voltage plateau for superior lithium storage[J].RSC Advances,2014,45(29):8627-8631.
    [23]Mateyshina Y G,Uvarov N F.Electrochemical behavior of Li3-xM'xV2-yM'y(PO4)3(M'=K,M''=Sc,Mg+Ti)/C composite cathode material for lithium-ion batteries[J].Journal of Power Sources,2011,196(3):1494-1497.
    [24]Kuang Q,Zhao Y M,Liang Z Y,et al.Synthesis and electrochemical properties of Na-doped Li3V2(PO4)3 cathode materials for Li-ion batteries[J].Journal of Power Sources,2011,196(23):10169-10175.
    [25]Stankov S M,Abrahams I,Momchilov A,et al.Effect of Ti-doping on the electrochemical performance of lithium vanadium(III)phosphate[J].Ionics,2015,21(6):1501-1508.
    [26]Chen Z Y,Yuan G H,Dai C S,et al.Electrochemical behavior of Mg-doped 7LiFePO4-Li3V2(PO4)3 composite cathode material for lithium-ion batteries[J].Ionics,2013,19(8):1077-1084.
    [27]Huang J S,Yang L,Liu K Y,et al.Synthesis and characterization of Li3V(2-2x/3)Mgx(PO4)3/C cathode material for lithium-ion batteries[J].Journal of Power Sources,2010,195(15):5013-5018.
    [28]Naoi K,Kisu K,Okita N,et al.Cathode properties of nanocrystalline Li3V1.8Al0.2(PO4)3 multi-walled carbon nanotube composites for hybrid capacitor prepared via ultra-centrifugation treatment[J].Electrochemistry,2015,83(4):249-255.
    [29]Ai D J,Liu K Y,Li Z G,et al.Aluminothermal synthesis and characterization of Li3V2-xAlx(PO4)3 cathode materials for lithium ion batteries[J].Electrochimica Acta,2011,56(7):2823-2827.
    [30]Nathiya K,Bhuvanseswari D,Ganglibabu,et al.Li3MxV2-x(PO4)3/C(M=Fe,Co)composite cathodes with extended solubility limit and improved electrochemical behavior[J].RSC Advances,2012,2(17):6885-6889.
    [31]Bai G L,Yang,Y F,Shao H X,et al.Synthesis and electrochemical properties of polyhedron-shaped Li3V2-xSnx(PO4)3 as cathode material for lithium-ion batteries[J].Journal of Electroanalytical Chemistry,2013,688:98-102.
    [32]Liu H P,Bi S F,Wen G W,et al.Synthesis and electrochemical performance of Sn-doped Li3V2(PO4)3/C cathode material for lithium ion battery by microwave solid-state technique[J].Journal of Alloys and Compounds,2012,543:99-104.
    [33]Dang J X,Xiang F,Gu N Y,et al.Synthesis and electrochemical performance characterization of Ce-doped Li3V2(PO4)3/C as cathode materials for lithium-ion batteries[J].Journal of Power Sources,2013,243:33-39.
    [34]Chen R,Zhang H,Li Y,et al.Gadolinium/chloride co-doping of lithium vanadium phosphate cathodes for lithium-ion batteries[J].Solid State Ionics,2017,304:65-70.
    [35]Xu J,Chen G,Zhang H J,et al.Electrochemical performance of Zrdoped Li3V2(PO4)3/C composite cathode materials for lithium ion batteries[J].Journal of Applied Electrochemistry,2014,45(2):123-130.
    [36]Liu L Y,Qiu Y B,Mai Y Z,et al.Influences of neodymium doping on magnetic and electrochemical properties of Li3V2(PO4)3/Csynthesized via a sol-gel method[J].Journal of Power Sources,2015,295:246-253.
    [37]Wang S L,Zhang Z X,Deb A,et al.Synthesis characterization and electrochemical performance of Ce-doped ordered macroporous Li3V2(PO4)3/C cathode materials for lithium ion batteries[J].Industrial&Engineering Chemistry Research,2014,53(50):19525-19532.
    [38]Xia Y,Zhang W K,Huang H,et al.Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithiumion batteries[J].Materials Science and Engineering B,2011,176(8):633-639.
    [39]Jiang B Q,Hu S F,Wang M W,et al.Synthesis and electrochemical performance of La-doped Li3V2-xLax(PO4)3 cathode materials for lithium batteries[J].Rare Metals,2011,30(2):115-119.
    [40]Yang Z Y,Hu J H,Chen Z Y,et al.Sol-gel-assisted,fast and lowtemperature synthesis of La-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries[J].RSC Advances,2015,5(23):17924-17930.
    [41]Cui K,Hu S C,Li Y K,et al.Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries[J].Electrochimica Acta,2016,210:45-52.
    [42]Zhang S,Wu Q,Deng C,et al.Synthesis and characterization of Ti-Mn and Ti-Fe codoped Li3V2(PO4)3 as cathode material for lithium ion batteries[J].Journal of Power Sources,2012,218:56-64.
    [43]Deng C,Zhang S,Yang S Y,et al.Effects of Ti and Mg co-doping on the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries[J].Journal of Physical Chemistry C,2011,115(30):15048-15056.
    [44]张天睿,罗明标,黄阳辉,等.镁铝联合掺杂对Li3V2(PO4)3电化学性能的影响研究[J].化工新型材料,2018,(1):121-124.Zhang T R,Luo M B,Huang Y H,et al.Effect of Mg and Al codoping on electrochemical performance of Li3V2(PO4)3[J].New Chemical Materials,2018,(1):121-124.
    [45]Yan J,Yuan W,Tang Z Y,et al.Synthesis and electrochemical performance of Li3V2(PO4)3-xClx/C cathode materials for lithium-ion batteries[J].Journal of Power Sources,2012,209:251-256.
    [46]Yao J H,Jia Z T,Zhang P J,et al.Microwave assisted sol-gel synthesis of chlorine doped lithium vanadium phosphate[J].Ceramics International,2013,39(2):2165-2170.
    [47]Zhong K S,Liu L T,Liu J Q,et al.High-rate characteristic of F-substitution cathode materials for Li-ion batteries[J].Solid State Communications,2009,149(39/40):1679-1683.
    [48]张钰.锂离子电池正极材料Li3V2(PO4)3的制备及其改性研究[D].乌鲁木齐:新疆师范大学,2016:62-63.Zhang Y.Study on synthesis and modification of as cathode materials for lithium-ion battery[D].Urumqi:Xinjiang Normal University,2016:62-63.
    [49]孙孝飞,徐友龙,郑晓玉,等.三元掺杂改性锂离子电池正极材料Li3V2(PO4)3[J].物理化学学报,2015,31(8):1513-1520.Sun X F,Xun Y L,Zheng X Y,et al.Triple-cation-doped Li3V2(PO4)3cathode material for lithium-ion batteries[J].Acta Physico-Chimica Sinica,2015,31(8):1513-1520.
    [50]Son J N,Kim S H,Kim M C,et al.Superior charge-transfer kinetics of NASICON-type Li3V2(PO4)3 cathodes by multivalent Al3+and Clsubstitutions[J].Electrochimica Acta,2013,97:210-215.
    [51]Pan A,Choi D,Zhang J G,et al.High-rate cathodes based on Li3V2(PO4)3,nanobelts prepared via surfactant-assisted fabrication[J].Journal of Power Sources,2011,196(7):3646-3649.
    [52]Rui X H,Jin Y,Feng X Y,et al.A comparative study on the lowtemperature performance of LiFePO4/C and Li3V2(PO4)3 cathodes for lithium-ion batteries[J].Journal of Power Sources,2011,196(4):2109-2114.
    [53]彭洪源.Li3V2(PO4)3复合正极材料的溶胶凝胶法制备与电化学性能研究[D].昆明:昆明理工大学,2013:24-38.Peng H Y.Preparation and electrochemical properties of Li3V2(PO4)3composite anode materials by sol-gel method[D].Kunming:Kunming University of Science and Technology,2013:24-38.
    [54]闫继.锂离子电池Li3V2(PO4)3正极材料的制备与掺杂改性研究[D].天津:天津大学,2012:69-79.Yan J.An investigation on the synthesis and modification of Li3C2(PO4)3/C cathode material for lithium-ion battery[D].Tianjin:Tianjin University,2012:69-79.
    [55]Wang Z,Guo H,Yan P.In-situ synthesis of reduced graphene oxide modified lithium vanadium phosphate for high-rate lithium-ion batteries via microwave irradiation[J].Electrochimica Acta,2015,174(1):26-32.
    [56]Pei B,Jiang Z,Zhang W,et al.Nanostructured Li3V2(PO4)3,cathode supported on reduced graphene oxide for lithium-ion batteries[J].Journal of Power Sources,2013,239(10):475-482.
    [57]Fei T,Hu Z H,Ma X H,et al.Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries[J].Electrochimica Acta,2013,91(3):43-49.
    [58]Zhang C,Ping N,Shen L,et al.Li3V2(PO4)3/nitrogen-doped reduced graphene oxide nanocomposite with enhanced lithium storage properties[J].Journal of Solid State Electrochemistry,2016,20(7):1983-1990.
    [59]Wang C,Liu H,Yang W.An integrated core-shell structured Li3V2(PO4)3/C cathode material of LIBs prepared by a momentary freeze-drying method[J].Journal of Materials Chemistry,2012,22(12):5281-5285.
    [60]Qiao Y Q,Wang X L,Mai Y J,et al.Freeze-drying synthesis of Li3V2(PO4)3/C cathode material for lithium-ion batteries[J].Journal of Alloys&Compounds,2012,536(40):132-137.
    [61]Chen Q,Zhang T,Qiao X,et al.Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery[J].Journal of Power Sources,2013,234(21):197-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700