用户名: 密码: 验证码:
人工煤气管道萘沉积量预测方法及影响因素研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:On the forecast methods and the influential factors of naphthalene deposition in the artificial gas pipeline
  • 作者:吴晓南 ; 李倩 ; 卢泓方 ; 余思颖 ; 李廉卿 ; 王鑫鑫
  • 英文作者:WU Xiao-nan;LI Qian;LU Hong-fang;YU Si-ying;LI Lian-qing;WANG Xin-xin;School of Civil Engineering and Architecture,Southwest Petroleum University;School of Petroleum Engineering, Southwest Petroleum University;Trenchless Technology Center, Louisiana Tech University;China Petroleum First Construction Corporation;
  • 关键词:公共安全 ; 人工煤气 ; 输气管道 ; 萘沉积 ; 机理 ; 地温 ; 输气温度 ; 输气压力
  • 英文关键词:public safety;;manufactured gas;;gas pipeline;;naphthalene deposition;;mechanism;;ground temperature;;gas transmission temperature;;gas transmission pressure
  • 中文刊名:AQHJ
  • 英文刊名:Journal of Safety and Environment
  • 机构:西南石油大学土木工程与建筑学院;西南石油大学石油与天然气工程学院;美国路易斯安那理工大学非开挖技术中心;中国石油天然气第一建设有限公司;
  • 出版日期:2019-06-25
  • 出版单位:安全与环境学报
  • 年:2019
  • 期:v.19;No.111
  • 语种:中文;
  • 页:AQHJ201903027
  • 页数:8
  • CN:03
  • ISSN:11-4537/X
  • 分类号:187-194
摘要
为了研究人工煤气管道内萘沉积量的预测方法及其影响因素,以昆明人工煤气输气干管为例,结合TGNET软件模拟输气干管的运行工况(选用BWRS状态方程,Colebrook-White流动方程)计算管内萘沉积量,通过改变模型参数(地温、输气温度及输送压力)分析萘沉积量的影响因素。结果表明:1)萘沉积量预测方法的计算结果与实际情况的相对误差仅为3. 36%,方法可行; 2)饱和萘含量随地温降低而降低,随管道输送压力降低而升高,随管道输送温度降低而降低,且管内外温差越大,萘沉积量越大; 3)温度变化是造成人工煤气管道中萘沉积并堵塞管道的主要原因,建议在煤气进入城市管网前先对其作降温处理,冬季在弯管、调压器等易出现萘沉积的部位添加保温设施以维持管内温度。
        The present article is devoted to finding a forecast method for the artificial gas pipeline working life and the influential factors of naphthalene deposition of such pipelines. In the article,we have taken the pipeline produced in Kunming as a case study sample. In the given paper,we have established a gas transmission hydraulic calculation model state equation and the Colebrook-White flow equation as our calculation standard based on the theory of naphthalene deposition by using a so-called TGNET software. According to the operating conditions of the gas pipeline,the deposition of naphthalene in the gas pipeline manufactured has been worked out,and then compared with the field test results. Furthermore,an analysis has been done on the influential factors( i. e. the ground temperature,the gas transportation temperature and the gas transportation pressure) of the naphthalene deposition in the pipe by changing the model parameters. The results of this analysis prove that the calculation result of the naphthalene deposition prediction method is 19. 384 t/a,and the relative error with the actual result 20. 06 t/a has turned out only 3. 36%. All the aforementioned calculation proves the feasibility of the naphthalene deposition forecasting method. Besides,the content of the saturated naphthalene also proves to decrease with the decrease of the ground temperature as well as the drop-down of pipeline temperature,but increases with the decrease of the pipeline pressure. That is to say,the greater the temperature difference between the inside and outside of the pipe,the greater the naphthalene deposition. Furthermore,temperature change also serves as the main cause of naphthalene deposition and blockage in the manufactured gas pipeline. Thus,it can be suggested that the manufactured gas should be cooled down before the manufactured gas enters the urban gas pipe network to precipitate some large amount of naphthalene. In this way,the naphthalene content in the urban gas pipe system tends to get reduced greatly. What is more,in cold winter days,it would be possible to maintain the temperature inside the pipe invariability and reduce the likeliness of naphthalene deposition by adding a thermal insulation facility or device in which there may take place naphthalene deposition in the pipes,such as elbows and pressure regulators.
引文
[1] WANG Zhongyuan(王中元),LUO Dongkun(罗东坤),LIU Linlin(刘璘璘). Urban gas development phases in China and its main characteristics[J]. Oil&Gas Storage and Transportation(油气储运),2016,35(2):115-123.
    [2] ZHANG Xingmei(张兴梅),WU Ying(吴莹),WU Qingye(伍清晔),et al. Research on naphthalene plugging of gas pipeline[J]. Gas&Heat(煤气与热力),1999,19(3):23-31.
    [3] XIE Donglai(解东来),XIAO Wei(肖巍),NIE Tingzhe(聂廷哲),et al. Countermeasures against gas leakage from bell socket of cast-iron pipe after natural gas conversion[J]. Gas&Heat(煤气与热力),2007,27(3):7-10.
    [4] LI Jun(李军). Discussion on problems of natural gas conversion in Taiyuan[J]. Shanxi Science and Technology(山西科技),2008(1):53-54.
    [5] TUPHOLME C H S. Hydrogenation products of naphthalene[J]. Industrial and Engineering Chemistry,News Edition,1935,13(16):332.
    [6] VOROBIEV S E. Removal of naphthalene from recycled absorbing oil[J]. Coke and Chemistry,2000(10):38-40.
    [7] MIRONENKO L I,VOLKOV E L. Closed cycles of final cooling of coke-oven gas in byproduct coke plants[J].Coke and Chemistry,2001(4):33-37.
    [8] HAN Shibing(韩仕兵),YAO Renshi(姚仁仕). Removal of naphthalene in coke oven gas[J]. Baosteel Technology(宝钢技术),2002(1):4-12.
    [9] NAZAROV V G. Removal of naphthalene and tar from coke-oven gas in primary cooling and condensation[J].Coke and Chemistry,2016,59(6):221-234.
    [10] WU Qingye(伍清晔),LI Shanbin(李善斌),ZHANG Xingmei(张兴梅),et al. The research on the gas pipeline plugging problem[J]. Journal of Harbin University of Civil Engineering and Architecture(哈尔滨建筑大学学报),1998,31(2):73-78.
    [11] ZHANG Baoqiang(张宝强). Cause analysis of coke oven gas pipeline blockage of hydrogen production station and handling measures[J]. Metallurgical Power(冶金动力),2002(1):4-12.
    [12] ZHOU Min(周敏),WANG Quanqing(王泉清),MA Mingjie(马名杰). Jiaohua gongyixue(焦化工艺学)[M]. Xuzhou:China University of Mining and Technology Press,1995.
    [13] FOWLER L,TRUMP W N,VOGLER C E. Vapor pressure of naphthalene. New measurements between 40.deg. and 180. deg[J]. Journal of Chemical&Engineering Data,1968,13(2):209-210.
    [14] ZHOU Xihua(周西华),LIANG Yin(梁茵),WANG Xiaomao(王小毛),et al. Comparison of saturation vapor pressure formulas[J]. Journal of Liaoning Technical University(辽宁工程技术大学学报),2007,26(3):331-333.
    [15] FAN Xingxiang(樊兴祥). Internal corrosion and clogging mechanism and preventive measures of artificial gas pipe network in Kunming area[J]. Journal of Kunming University of Science and Technology:Natural Science Edition(昆明理工大学学报:自然科学版),2016,41(6):76-81.
    [16] ZHANG Fukun(张福坤),WU Changchun(吴长春),ZUO Lili(左丽丽). Calculation on hydraulic friction coefficient of gas transmission pipelines[J]. Oil&Gas Storage and Transportation(油气储运),2010(3):181-186.
    [17] TAN Hongbo(谭洪波). Error analysis of naphthalene content in coke-oven gas determination[J]. Goal Quality and Technology(煤质技术),2008(2):39-42.
    [18] CHENG Jian’gang(程建刚),XIE Ming’en(解明恩).The analysis of regional climate change features over Yunnan in recent 50 years[J]. Progress in Geography(地理科学进展),2008,27(5):19-26.
    [19] ZHENG Yijia(郑亦佳),MIAO Yucong(缪育聪),LIU Shuhua(刘树华),et al. Analysis of meteorological variables in Dianzhong region in recent 51 years[J]. Acta Scientiarum Naturalium Universitatis Pekinensis(北京大学学报:自然科学版),2017,53(1):8-18.
    [20] LI Yuxing(李玉星),YAO Guangzhen(姚光镇). The design and management of gas transmission pipeline(输气管道设计与管理)[M]. Dongying:China University of Petroleum Press,2009.
    [21] ZHOU Xianpeng(周显鹏),PENG Xingqian(彭兴黔),ZHANG Song(张松). Numerical simulation of wind pressures on the gable roof with cantilevered parapets[J]. Journal of Huaqiao University:Natural Science(华侨大学学报:自然科学版),2008,29:289-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700