用户名: 密码: 验证码:
辐射滑移边界条件下多孔板上的传热与纳米流体流动(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions
  • 作者:Hamid ; MALEKI ; Jalal ; ALSARRAF ; Abbas ; MOGHANIZADEH ; Hassan ; HAJABDOLLAHI ; Mohammad ; Reza ; SAFAEI
  • 英文作者:Hamid MALEKI;Jalal ALSARRAF;Abbas MOGHANIZADEH;Hassan HAJABDOLLAHI;Mohammad Reza SAFAEI;Department of Mechanical Engineering, Isfahan University of Technology;Department of Automotive and Marine Engineering Technology, College of Technological Studies, The Public Authority for Applied Education and Training;Biomaterial Research Group, Department of Materials Engineering, Isfahan University of Technology;Department of Mechanical Engineering, Vali-e-Asr University of Rafsanjan;Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University;Faculty of Electrical and Electronics Engineering, Ton Duc Thang University;
  • 关键词:辐射 ; 滑移条件 ; 多孔表面 ; 热产生/吸收 ; 黏性耗散 ; 纳米流体
  • 英文关键词:radiation;;slip condition;;porous surface;;heat generation/absorption;;viscous dissipation;;nanofluid
  • 中文刊名:ZNGY
  • 英文刊名:中南大学学报(英文版)
  • 机构:Department of Mechanical Engineering, Isfahan University of Technology;Department of Automotive and Marine Engineering Technology, College of Technological Studies, The Public Authority for Applied Education and Training;Biomaterial Research Group, Department of Materials Engineering, Isfahan University of Technology;Department of Mechanical Engineering, Vali-e-Asr University of Rafsanjan;Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University;Faculty of Electrical and Electronics Engineering, Ton Duc Thang University;
  • 出版日期:2019-05-15
  • 出版单位:Journal of Central South University
  • 年:2019
  • 期:v.26
  • 语种:英文;
  • 页:ZNGY201905007
  • 页数:17
  • CN:05
  • ISSN:43-1516/TB
  • 分类号:83-99
摘要
考虑多孔表面上的纳米流体在不同时期不同值下可能会发生热性能变化。本研究的目的是研究纳米粒子的体积分数、纳米粒子的种类、吸入或注入、热的产生或吸收、Eckert数、热和速度滑移参数以及辐射对多孔平板上流体流动和传热的影响。研究了4种不同类型的纳米粒子,Cu纳米颗粒、Al_2O_3纳米粒子和碳基纳米材料(MWCNTs和SWCNTs),分散在水中的情况。利用相似解将控制方程转化为常微分方程,并用RKF45算法进行数值求解。模拟结果与其他研究人员的结果相矛盾,其他研究人员认为,使用具有高导热系数的高体积分数的纳米粒子可提高纳米流体的传热速率;本研究证明,当辐射、热产生和粘滞耗散等参数值发生显著变化时,提高纳米粒子的体积分数可能会降低传热速率。
        Presence of different terms with various values can alter the thermal behavior of the nanofluids flow over porous surfaces. The aim of this research is to study the influence of nanoparticles volume fraction, nanoparticles type,suction or injection, the heat generation or absorption, the Eckert number, thermal and velocity slip parameters, and radiation on the velocity and temperature fields on the flow and heat transfer over a porous flat plate. Four different types of nanoparticles including metal nanoparticles(Cu), metal oxide nanoparticles(Al_2O_3) and carbon-based nanomaterials(MWCNTs and SWCNTs) which were dispersed in the water(as based fluid) are studied. The governing equations are converted into the ordinary differential equations using similarity solution and solved numerically by the RKF45 algorithm. The results of the simulations showed a contradiction with the results of other researchers who expressed that using nanoparticles with higher thermal conductivity and volume fraction led to increasing heat transfer rate in nanofluids; this study proves that, in some cases, boosting the volume fraction of nanoparticles has a potential to decrease the heat transfer rate due to significant changes in values of some parameters including radiation, heat generation, and viscous dissipation.
引文
[1]HAJMOHAMMADI M R,MALEKI H,LORENZINI G,NOURAZAR S S.Effects of Cu and Ag nano-particles on flow and heat transfer from permeable surfaces[J].Advanced Powder Technology,2015,26(1):193-199.
    [2]ISHAK A.Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition[J].Applied Mathematics and Computation,2010,217(2):837-842.
    [3]ISAIAH O O,ALFRED M W,JACOB B K.MHD stokes heat and mass flow past an infinite permeable plate subjected to convective surface boundary conditions[J].International Journal of Contemporary Mathematical Sciences,2017,12(3):139-154.
    [4]CHODHURY R,DEY B.Flow features of a conducting visco-elastic fluid past a vertical permeable plate[J].Global Journal of Pure and Applied Mathematics,2017,13(9):5687-5702.
    [5]SADRI S,BABAELAHI M.Analysis of a laminar boundary layer flow over a flat plate with injection or suction[J].Journal of Applied Mechanics and Technical Physics,2013,54(1):59-67.
    [6]YASIN M H I,ISHAK A,POP I.MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect[J].Journal of Magnetism and Magnetic Materials,2016,407:235-240.
    [7]RAJU M C,CHAMKHA A J,PHILIP J,VARMA S V.Soret effect due to mixed convection on unsteady magnetohydrodynamic flow past a semi-infinite vertical permeable moving plate in presence of thermal radiation,heat absorption and homogenous chemical reaction[J].International Journal of Applied and Computational Mathematics,2017,3(2):947-961.
    [8]SINGH G,MAKINDE O D.Mixed convection slip flow with temperature jump along a moving plate in presence of free stream[J].Thermal Science,2015,19(1):119-128.
    [9]EEGUNJOBI A S,MAKINDE O D,JANGILI S.Unsteady MHD chemically reacting and radiating mixed convection slip flow past a stretching surface in a porous medium[J].In Defect and Diffusion Forum,2017,377:200-210.
    [10]MUHAMMAD A,MAKINDE O D.Thermodynamics analysis of unsteady MHD mixed convection with slip and thermal radiation over a permeable surface[J].In Defect and Diffusion Forum,2017,374:29-46.
    [11]HEYDARI A,AKBARI O A,SAFAEI M R,DERAKHSHANI M,ALRASHED A A,MASHAYEKHI R,SHABANI G A,ZARRINGHALAM M,NGUYEN T K.The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel[J].Journal of Thermal Analysis and Calorimetry,2018,131(3):2893-2912.
    [12]MAGHSOUDI P,SIAVASHI M.Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity[J].Journal of Thermal Analysis and Calorimetry,2018,135(2):947-961.
    [13]MALEKI H,SAFAEI M R,ALRASHED A A,KASAEIANA.Flow and heat transfer in non-Newtonian nanofluids over porous surfaces[J].Journal of Thermal Analysis and Calorimetry,2019,135(3):1655-1666.
    [14]KHAMLICHE T,KHAMLICH S,DOYLE T B,MAKINDEO D,MAAZA M.Thermal conductivity enhancement of nano-silver particles dispersed ethylene glycol based nanofluids[J].Materials Research Express,2018,5(3):035020.
    [15]SARI M R,KEZZAR M,ADJABI R.Heat transfer of copper/water nanofluid flow through converging-diverging channel[J].Journal of Central South University,2016,23(2):484-496.
    [16]MALEKI H,SAFAEI MR,TOGUN H,DAHARI M.Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation[J].Journal of Thermal Analysis and Calorimetry,2019,135(3):1643-1654.
    [17]SAFAEI M R,KARIMIPOUR A,ABDOLLAHI A,NGUYEN T K.The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method[J].Physica A:Statistical Mechanics and Its Applications,2018,509:515-535.
    [18]ABBASSI M A,SAFAEI M R,DJEBALI R,GUEDRI K,ZEGHMATI B,ALRASHED A A A.LBM simulation of free convection in a nanofluid filled incinerator containing a hot block[J].International Journal of Mechanical Sciences,2018,144:172-185.
    [19]SIAVASHI M,JAMALI M.Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow[J].Journal of Central South University,2017,24(8):1850-1865.
    [20]ALRASHED A A A,GHARIBDOUSTI M S,GOODARZIM,de OLIVEIRA L R,SAFAEI M R,BANDARRA F E P.Effects on thermophysical properties of carbon based nanofluids:Experimental data,modelling using regression,ANFIS and ANN[J].International Journal of Heat and Mass Transfer,2018,125:920-932.
    [21]ARANI A A A,AKBARI O A,SAFAEI M R,MARZBAN A,ALRASHED A A A,AHMADI G R,NGUYEN T K.Heat transfer improvement of water/single-wall carbon nanotubes(SWCNT)nanofluid in a novel design of a truncated double-layered microchannel heat sink[J].International Journal of Heat and Mass Transfer,2017,113:780-795.
    [22]ALRASHED A A A A,AKBARI O A,HEYDARI A,TOGHRAIE D,ZARRINGHALAM M,SHABANI G A S,SEIFI A R,GOODARZI M.The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel[J].Physica B:Condensed Matter,2018,537:176-183.
    [23]SIAVASHI M,GHASEMI K,YOUSOFVAND R,DERAKHSHAN S.Computational analysis of SWCNHnanofluid-based direct absorption solar collector with a metal sheet[J].Solar Energy,2018,170:252-262.
    [24]GUPTA M,SINGH V,KUMAR R,SAID Z.A review on thermophysical properties of nanofluids and heat transfer applications[J].Renewable and Sustainable Energy Reviews,2017,74:638-670.
    [25]AHMED A,NADEEM S.Biomathematical study of time-dependent flow of a Carreau nanofluid through inclined catheterized arteries with overlapping stenosis[J].Journal of Central South University,2017,24(11):2725-2744.
    [26]BAHIRAEI M,JAMSHIDMOFID M,GOODARZI M.Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs[J].Journal of Molecular Liquids,2019,273:88-98.
    [27]MAHMOODI M,KANDELOUSI S.Kerosene-alumina nanofluid flow and heat transfer for cooling application[J].Journal of Central South University,2016,23(4):983-990.
    [28]SIAVASHI M,RASAM H,IZADI A.Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink[J].Journal of Thermal Analysis and Calorimetry,2019,135(2):1399-1415.
    [29]BAHMANI M H,SHEIKHZADEH G,ZARRINGHALAMM,AKBARI O A,ALRASHED A A,SHABANI G A,GOODARZI M.Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger[J].Advanced Powder Technology,2018,29(2):273-282.
    [30]KHODABANDEH E,SAFAEI M R,AKBARI S,AKBARIO A,ALRASHED A A A.Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds:Geometric study[J].Renewable Energy,2018,122:1-16.
    [31]DAS K,CHAKRABORTY T,KUMAR K P.Slip effects on nanofluid flow over a nonlinear permeable stretching surface with chemical reaction[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2016,230(14):2473-2482.
    [32]ZIAEI-RAD M,KASAEIPOOR A,RASHIDI M M,LORENZINI G.A similarity solution for mixed-convection boundary layer nanofluid flow on an inclined permeable surface[J].Journal of Thermal Science and Engineering Applications,2017,9(2):021015.
    [33]MOHAMMDIEN S A,RASLAN K,ABDEL-WAHED M S,ABEDEL-AAL E M.KKL-model of MHD CuO-nanofluid flow over a stagnation point stretching sheet with nonlinear thermal radiation and suction/injection[J].Results in Physics,2018,10:194-199.
    [34]NANDEPPANAVAR M M,REDDY G R S,SHAKUNTHALA S.Magneto-hydrodynamic Blasius flow and heat transfer from a flat plate in the presence of suspended carbon nanofluids[J].Proceedings of the Institution of Mechanical Engineers,Part N:Journal of Nanomaterials,Nanoengineering and Nanosystems,2018,232(1):31-40.
    [35]ETWIRE C J,SEINI I Y,MUSAH R,MAKINDE O D.Combined effects of variable viscosity and thermal conductivity on dissipative flow of oil-based nanofluid over a permeable vertical surface[J].In Diffusion Foundations,2018,16:158-176.
    [36]NAYAK M K.MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation[J].International Journal of Mechanical Sciences,2017,124:185-193.
    [37]HAYAT T,KHAN M I,FAROOQ M,ALSAEDI A,YASMEEN T.Impact of Marangoni convection in the flow of carbon-water nanofluid with thermal radiation[J].International Journal of Heat and Mass Transfer,2017,106:810-815.
    [38]MAKINDE O D.Effects of viscous dissipation and Newtonian heating on boundary-layer flow of nanofluids over a flat plate[J].International Journal of Numerical Methods for Heat&Fluid Flow,2013,23(8):1291-1303.
    [39]ZAIB A,BHATTACHARYYA K,SHAFIE S.Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid[J].Journal of Central South University,2015,22(12):4856-4863.
    [40]MAKINDE O D,KHAN W A,KHAN Z H.Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet[J].International Journal of Heat and Mass Transfer,2013,62:526-533.
    [41]BACHOK N,ISHAK A,POP I.Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet[J].International Journal of Heat and Mass Transfer,2012,55(7,8):2102-2109.
    [42]BHATTACHARYYA K.Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet[J].International Communications in Heat and Mass Transfer,2011,38(7):917-922.
    [43]YAO S,FANG T,ZHONG Y.Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions[J].Communications in Nonlinear Science and Numerical Simulation,2011,16(2):752-760.
    [44]PAL D,MANDAL G.Mixed convection-radiation on stagnation-point flow of nanofluids over a stretching/shrinking sheet in a porous medium with heat generation and viscous dissipation[J].Journal of Petroleum Science and Engineering,2015,126:16-25.
    [45]MANSUR S,ISHAK A,POP I.The magnetohydrodynamic stagnation point flow of a nanofluid over a stretching/shrinking sheet with suction[J].PLoS One,2015,10(3):0117733.
    [46]ZAIMI K,ISHAK A,POP I.Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid[J].Scientific Reports,2014,4:4404.
    [47]UDDIN M J,BéG O A,ISMAIL A I.Radiative convective nanofluid flow past a stretching/shrinking sheet with slip effects[J].Journal of Thermophysics and Heat Transfer,2015,29(3):513-523.
    [48]AZIZ A.A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition[J].Communications in Nonlinear Science and Numerical Simulation,2009,14(4):1064-1068.
    [49]ABU-NADA E.Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step[J].International Journal of Heat and Fluid Flow,2008,29(1):242-249.
    [50]KHAN W A,KHAN Z H,RAHI M.Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary[J].Applied Nanoscience,2014,4(5):633-641.
    [51]TIWARI R K,DAS M K.Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids[J].International Journal of Heat and Mass Transfer,2007,50(9,10):2002-2018.
    [52]OZTOP H F,ABU-NADA E.Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J].International Journal of Heat and Fluid Flow,2008,29(5):1326-1336.
    [53]FORABOSCHI F P,DI F I.Heat transfer in laminar flow of non-Newtonian heat-generating fluids[J].International Journal of Heat and Mass Transfer,1964,7(3):315-325.
    [54]MAHMOUD M A A,MEGAHED A M.Effects of suction and injection on MHD heat transfer in an electrically conducting fluid at a stretching vertical plate embedded in a porous medium with uniform free stream[J].Nuovo Cimento-B,2006,121(9):923-936.
    [55]MOTSUMI T G,MAKINDE O D.Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate[J].Physica Scripta,2012,86(4):045003.
    [56]BRINKMAN H C.The viscosity of concentrated suspensions and solutions[J].The Journal of Chemical Physics,1952,20(4):571.
    [57]MAXWELL JAMES CLERK.A treatise on electricity and magnetism[M].Clarendon Press,1881.
    [58]MURSHED S M S,de CASTRO C N.Superior thermal features of carbon nanotubes-based nanofluids-A review[J].Renewable and Sustainable Energy Reviews,2014,37:155-167.
    [59]XUE Q Z.Model for thermal conductivity of carbon nanotube-based composites[J].Physica B:Condensed Matter,2005,368(1-4):302-307.
    [60]GHADIKOLAEI S S,HOSSEINZADEH K,HATAMI M,GANJI D D,ARMIN M.Investigation for squeezing flow of ethylene glycol(C2H6O2)carbon nanotubes(CNTs)in rotating stretching channel with nonlinear thermal radiation[J].Journal of Molecular Liquids,2018,263:10-21.
    [61]FAROOQ S,HAYAT T,ALSAEDI A,ASGHAR S.Mixed convection peristalsis of carbon nanotubes with thermal radiation and entropy generation[J].Journal of Molecular Liquids,2018,250:451-467.
    [62]HAYAT T,NASIR T,KHAN M I,ALSAEDI A.Non-Darcy flow of water-based single(SWCNTs)and multiple(MWCNTs)walls carbon nanotubes with multiple slip conditions due to rotating disk[J].Results in Physics,2018,9:390-399.
    [63]AL-RASHED A A A A,KALIDASAN K,KOLSI L,AYDI A,MALEKSHAH E H,HUSSEIN A K,KANNA P R.Three-dimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT-water nanofluid filled cavity[J].Journal of Molecular Liquids,2018,252:454-468.
    [64]CORTELL R.Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet[J].Physics Letters A,2008,372(5):631-636.
    [65]RAPTIS A,PERDIKIS C,TAKHAR H S.Effect of thermal radiation on MHD flow[J].Applied Mathematics and Computation,2004,153(3):645-649.
    [66]JAVED M,FAROOQ M,AHMAD S,ANJUM A.Melting heat transfer with radiative effects and homogeneousheterogeneous reaction in thermally stratified stagnation flow embedded in porous medium[J].Journal of Central South University,2018,25(11):2701-2711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700