用户名: 密码: 验证码:
气候变暖背景下全球海温对中国东部夏季降水年代际转折的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE IMPACTS OF GLOBAL SEA SURFACE TEMPERATURE ON DECADAL TRANSITIONS OF SUMMER PRECIPITATION OVER EASTERN CHINA AT GLOBAL WARMING TRANSITION POINTS
  • 作者:王欢 ; 李栋
  • 英文作者:WANG Huan;LI Dong-liang;The Faculty Geography Resource Sciences, Sichuan Normal University;Nanjing University of Information Science & Technology, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education/International Joint Laboratory on Climate and Environmental Change;
  • 关键词:中国东部夏季降水 ; 年代际转折 ; 全球海温 ; 统计分析
  • 英文关键词:summer precipitation over eastern China;;decadal variation;;global sea surface temperature;;statistical methods
  • 中文刊名:RDQX
  • 英文刊名:Journal of Tropical Meteorology
  • 机构:四川师范大学地理与资源科学学院;南京信息工程大学气象灾害预报预警与评估协同创新中心/气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室;
  • 出版日期:2019-06-15
  • 出版单位:热带气象学报
  • 年:2019
  • 期:v.35
  • 基金:公益性行业(气象)科研专项(GYHY201506001-1);; 国家重点基础研究发展计划(973计划)项目(2013CB430202);; 江苏省普通高校学术学位研究生科研创新计划项目(1354051501003);; 国家自然科学基金项目(91337109、41305080);; 江苏高校优势学科建设工程资助项目(PAPD)共同资助
  • 语种:中文;
  • 页:RDQX201903012
  • 页数:11
  • CN:03
  • ISSN:44-1326/P
  • 分类号:112-122
摘要
针对1970年代末及1990年代初中国东部夏季降水(ECP)的年代际变化格局,采用EOF分解、相关分析、回归分析等统计方法诊断了全球海表面温度对ECP年代际变化前两个模态(EOF1、EOF2)的影响。发现大西洋多年代际振荡(AMO)序列,印度洋偶极子(DMI)序列,太平洋年代际振荡(PDO)序列与ECP前两个模态时间系数(PC1、PC2)相关性较好,结合各海温指数的年代际变化特征,发现ECP在1970年代末受PDO及DMI的影响在低纬及中纬度地区分别呈现EOF1、EOF2的正位相分布特征;而在1990年代初受AMO及PDO的影响主要呈现EOF1的特征。由各海温指数及PC1、PC2重建的ECP分布特征可知,AMO及DMI与PC1重建的ECP型相近,对ECP的影响范围集中在低纬地区。除去变暖影响的DMI及PC1回归的高度场中发现一个源起大西洋的波列,黄河以北为异常反气旋中心,以南为异常气旋中心,低层南风异常,水汽被输送到北方,导致中国北方降水增加,南方降水减少。PDO与PC2重建的ECP型相近,对ECP的影响集中在中纬度地区。二者回归得到中国东部低层北风异常,水汽在长江流域辐合,长江流域降水增加。
        To analyze the decadal variability of the summer precipitation over eastern China(ECP) in the late 1970 s and the early 1990 s, the impacts of global sea surface temperature on the first two modes of the EOF decomposition of the ECP decadal change are diagnosed based on traditional statistical methods. The results show that there are considerable correlations between the Indian Ocean Dipole(DMI), the Atlantic Pacific Decadal Oscillation(PDO) and the time coefficients of the first and second EOF modes(PC1, PC2).According to the decadal variations of the DMI and PDO, the ECP mainly demonstrates the positive phase of first EOF mode(EOF1) and second EOF mode(EOF2) in the late 1970 s due to DMI and PDO variations; the ECP shows the general first EOF mode(EOF1) in the early 1990 s because of AMO and PDO variations. The reconstructed ECPs based on the AMO, DMI and PC1 are similar, mainly affecting the lower latitude of ECP. The wave trains originating from the Atlantic Ocean in the 500 hPa height fields regressed by PC1 and the IDMI-T(DMI removing the global warming effect) include an anomalous anticyclone center over the north of the Yellow River and a cyclone center to the south of the Yellow River,which generate low-level southerly anomalies and more water vapor transportation into northern China. As a result, summer rainfall increases over northern China and decreases over southern China. The reconstructed ECPs by the PDO and PC2 are similar and mainly affect the mid-latitude of ECP. Their regression fields lead to low-level north wind anomalies and water vapor convergence over the Yangtze-River Valley, which can explain the rainfall growth over the corresponding region and the decrease over north and south China.
引文
[1]张莉萍,李栋梁,李潇.气候变暖背景下南海夏季风建立和结束日期及与其强度的关系[J].热带气象学报, 2014, 30(6):1 037-1 047.
    [2] STOCKER T F, QIN D, PLATTNER G, et al. Climate change:The physical science basis[C]. Contribution of Working Group I to Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013:710-719.
    [3]李瑞芬,陶丽,王明珠.江淮地区夏季降水的准两年周期振荡及其年代际变化的机理研究[J].热带气象学报, 2016, 32(1):94-108.
    [4]吕俊梅,任菊章,琚建华.东亚夏季风的年代际变化对中国降水的影响[J].热带气象学报, 2004, 20(1):73-80.
    [5] DING Y H, SUN Y, WANG Z Y, et al. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II:Possible causes[J]. Int J Climatol, 2008, 29(13):1 926-1 944.
    [6] DING Y H, LIU Y J, YING S, et al. Weakening of the Asian Summer Monsoon and its impact on the precipitation pattern in China[J].International Journal of Water Resources Development, 2010, 26(3):423-439.
    [7] GONG D Y, HO C H. Shift in the summer rainfall over the Yangtze River valley in the late 1970s[J]. Geophy Res Lett, 2002, 29(10):78-71.
    [8] MA Z. The interdecadal trend and shift of dry/wet over the central part of north China and their relationship to the Pacific Decadal Oscillation(PDO)[J]. Chinese Science Bulletin, 2007, 52(15):2 130-2 139.
    [9] NITTA T. Summer climate variability in China and its association with 500 hPa height an tropical convection[J]. J Meteor Soc Japan, 1996,74(4):425-445.
    [10] QIAN W, LIN X, ZHU Y, et al. Climatic regime shift and decadal anomalous events in China[J]. Climatic Change, 2007, 84(2):167-189.
    [11] WANG H. The weakening of the Asian monsoon circulation after the end of 1970's[J]. Adv Atmos Sci, 2001, 18(3):376-386.
    [12] GAO T, WANG H J, ZHOU T. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China[J]. Atmos Res, 2017, 197:379-389.
    [13] ZHANG R, WU B, HAN J, et al. Effects on summer monsoon and rainfall change over China duo to eurasian snow cover and ocean thermal conditions[M]. Climate Change-Realities, Impacts Over Ice Cap, Sea Level and Risks. 2013:P366.
    [14] ZHU Y, WANG H, MA J, et al. Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s'shift in East China summer rainfall[J]. J Geophy Res, 2015, 120(17):8 817-8 827.
    [15]钱维宏,朱亚芬,叶谦.赤道东太平洋海温异常的年际和年代际变率[J].科学通报, 1998, 43(10):1 098-1 102.
    [16] MANTUA J, HARE S R, ZHANG Y, et al. A Pacific interdecadal climate oscillation with impacts on salmon production[J]. Bull Amer Meteor Soc, 1997, 78(6):1 069-1 079.
    [17] LI H, DAI A, ZHOU T, et al. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950—2000[J].Climate Dynamics, 2010, 34(4):501-514.
    [18] YANG F, LAU K. Trend and variability of China precipitation in spring and summer:Linkage to sea-surface temperatures[J]. Int J Climatol, 2004, 24(13):1 625-1 644.
    [19]龚志强,封国林. 2012中国东部夏季降水及年代际转型的可能序列分析[J].物理学报, 2013, 62(9):547-556.
    [20]孙照渤,徐青竹,倪东鸿.华南春季降水的年代际变化及其与大气环流和海温的关系[J].大气科学学报, 2017, 40(4):433-442.
    [21] ZHOU W, LI C Y, CHAN J C L. The interdecadal variations of the summer monsoon rainfall over south China[J]. Meteorology and Atmospheric Physics, 2006, 93(3-4):165-175.
    [22]贾小龙,李崇银.南印度洋海温偶极子型振荡及其气候影响[J].地球物理学报, 2005, 48(6):1 238-1 249.
    [23]刘青春,秦宁生,李栋梁,等.印度洋海温的偶极振荡与高原汛期降水和温度的关系[J].高原气象, 2005, 24(3):350-356.
    [24] CHANG C, ZHANG Y, LI T. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I:Roles of the subtropical ridge[J]. J Climate, 2000, 13(24):4 310-4 325.
    [25] HU Z. Interdecadal variability of summer climate over East Asia and its association with 500-hPa height and global sea surface temperature[J]. J Geophy Res, 1997, 102(D16):19 403-19 412.
    [26]肖子牛,晏红明. El Ni觡o位相期间印度洋海温异常对中国南部初夏降水及初夏亚洲季风影响的数值模拟研究[J].大气科学, 2001, 25(2):173-183.
    [27]闫晓勇,张铭.赤道东太平洋海温异常期间印度洋偶极子对东亚季风区影响的数值模拟[J].热带气象学报, 2004, 20(4):375-382.
    [28] KNIGHT J R, ALLAN R J, FOLLAND K, et al. A signature of persistent natural thermohaline circulation cycles in observed climate[J].Geophy Res Lett, 2005, 32(20):L20708.
    [29] GOSWAMI B N, MADHUSOODANAN M S, NEEMA C P, et al. A physical mechanism for North Atlantic SST influence on the Indian summer monsoon[J]. Geophy Res Lett, 2006, 33(2):GL024803.
    [30] LI S, BATES G T. Influence of the Atlantic Multidecadal Oscillation on the winter climate of east China[J]. Adv Atmos Sci, 2007, 24(1):126-135.
    [31] ZHANG R, DELWORTH T L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation[J]. J Climate,2005, 18(12):1 853-1 860.
    [32] RAYNER N A, PARKER D E, HORTON E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. J Geophy Res, 2003, 108(D14):4 407.
    [33] MANTUA N J, HARE S R. The Pacific decadal oscillation[J]. Journal of Oceanography, 2002, 58(1):35-44.
    [34] BAUM S. Atlantic multidecadal oscillation[M]. Alphascript Publishing, 2010.
    [35] VINAYACHANDRA P N. A dipole mode in the tropical Indian Ocean[J]. Nature, 1999, 401(6 751):360.
    [36] KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR reanalysis 40-year project[J]. Bull Amer Meteor Soc, 1996, 77(3):437-471.
    [37] CUI Y, DUAN A, LIU Y, et al. Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA[J]. Climate Dyn, 2015, 45(5-6):1 617-1 634.
    [38] HSU H H, LIU X. Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall[J]. Geophy Res Lett, 2003,30(20):1 182-1 200.
    [39] YANAI M, LI C, SONG Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J]. J Meteor Soc Japan, 1992, 70(1B):319-351.
    [40] ZWIERS F W. Simulation of the Asian Summer Monsoon with the CCC GCM-1[J]. J Climate, 1993, 6(3):470-486.
    [41] DUAN A M, LIU Y, WU G. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer[J]. Science China Earth Sciences, 2005, 48(2):250-257.
    [42] DUAN A M, WANG M, LEI Y, et al. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980-2008[J]. J Climate, 2013, 26(1):261-275.
    [43] WANG B, BAO Q, HOSKINS B, et al. Tibetan Plateau warming and precipitation changes in East Asia[J]. Geophy Res Lett, 2008, 35(14):63-72.
    [44] LIU Y, WANG L, ZHOU W, et al. Three Eurasian teleconnection patterns:Spatial structures, temporal variability, and associated winter climate anomalies[J]. Climate Dyn, 2014, 42(11-12):2 817-2 839.
    [45] HUANG R H, CHEN J L, LIN W, et al. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J]. Adv Atmos Sci, 2012, 29(5):910-942.
    [46]邓伟涛.夏季北极涛动(AO)、东亚夏季风与中国东部降水的年代际变化关系[D].南京:南京信息工程大学, 2005.
    [47]郭其蕴,蔡静宁,邵雪梅,等. 1873-2000年东亚夏季风变化的研究[J].大气科学, 2004, 28(2):206-215.
    [48]何立富,武炳义,毛卫星.印度夏季风的年代际变化与我国北方的气候跃变[J].热带气象学报, 2005, 21(3):257-264.
    [49]李茜,魏凤英,李栋梁.近159年东亚夏季风年代际变化与中国东部旱涝分布[J].地理学报, 2011, 66(1):25-37.
    [50]刘海文,周天军,朱玉祥,等.东亚夏季风自20世纪90年代初开始恢复增强[J].科学通报, 2012, 57(9):765-769.
    [52]李霞.南海夏季风强度年际变化的年代际变异特征[D].北京:中国气象科学研究院,2006.
    [52] DING Y H, WANG Z, SUN Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I:Observed evidences[J]. Int J Climatol, 2008, 28(9):1 139-1 161.
    [53] KWON M H, JHUN J G, HA K J. Decadal change in East Asian summer monsoon circulation in the mid-1990s[J]. Geophy Res Lett, 2007,34(21):377-390.
    [54] ZHU Y, WANG H, ZHOU W, et al. Recent changes in the summer precipitation pattern in East China and the background circulation[J].Climate Dyn, 2011, 36(7-8):1 463-1 473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700