用户名: 密码: 验证码:
福鼎市桐江溪卤乙酸分布特征及潮汐影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution characteristics and tidal effects of haloacetic acids in Tongjiang River, Fuding City
  • 作者:王晓云 ; 李启明 ; 付爱民
  • 英文作者:WANG Xiaoyun;LEE Kingming;FU Aimin;College of Ecological Environment and Urban Construction, Fujian University of Technology;7th District Office, Taiwan Water Corporation;Fujian Ningde Nuclear Power Company Limited;
  • 关键词:水体环境 ; 福鼎市 ; 桐江溪 ; 卤乙酸 ; 分布特征 ; 相关性分析 ; 水质特性 ; 潮汐影响
  • 英文关键词:water body environmental science;;Fuding City;;Tongjiang River;;haloacetic acids(HAAs);;distribution characteristics;;correlation analysis;;water quality characteristics;;tidal effects
  • 中文刊名:HBGY
  • 英文刊名:Hebei Journal of Industrial Science and Technology
  • 机构:福建工程学院生态环境与城市建设学院;台湾自来水公司第七区管理处;福建宁德核电有限公司;
  • 出版日期:2019-07-08 11:20
  • 出版单位:河北工业科技
  • 年:2019
  • 期:v.36;No.176
  • 基金:福建省自然科学基金(2017J01396);; 宁德市生态水系建设专项(NDSL201706);; 福建工程学院科研启动基金(GY-Z160041)
  • 语种:中文;
  • 页:HBGY201904009
  • 页数:8
  • CN:04
  • ISSN:13-1226/TM
  • 分类号:41-48
摘要
为了掌握福鼎市桐江溪卤乙酸(HAAs)的含量、时空分布规律及其来源,对水体中HAAs化合物进行取样调查。根据桐江溪水文情势及沿岸特点设置10个取样点,于2017年12月及2018年7月按照涨潮、退潮情况分别对水样进行采集,检测HAAs分布情况,同时将卤乙酸(HAAs)与水质特性、涨退潮进行了相关性分析。研究发现,HAAs是普遍存在于桐江溪中的污染物质。其中,一氯乙酸(MCAA)、二氯乙酸(DCAA)、三氯乙酸(TCAA)、一溴乙酸(MBAA)、二溴乙酸(DBAA)等5种卤乙酸(HAA_5)质量浓度为0.44~3.39μg/L;一氯乙酸(MCAA)、二氯乙酸(DCAA)、三氯乙酸(TCAA)、一溴乙酸(MBAA)、二溴乙酸(DBAA)、三溴乙酸(TBAA)、一溴一氯乙酸(BCAA)、一溴二氯乙酸(BDCAA)、二溴一氯乙酸(CBDAA)等9种卤乙酸(HAA_9)质量浓度为0.83~56.15μg/L。桐江溪中HAAs主要为DCAA,TCAA,TBAA 3种,其中DCAA为制药厂及医院排水导致,主要分布在下游;TCAA主要来源于河段上游的农业生产活动;TBAA为上游沸石矿尾矿库受雨水冲刷而流入的Br~-所生成,主要分布于河流中下段。相关性分析结果表明,温度与HAA_5,HAA_9质量浓度呈现正相关,pH值与HAA_5,HAA_9质量浓度呈现负相关;TCAA质量浓度于相同季节不同潮汐及不同季节相同潮汐时均呈现上游高于下游的现象,其他HAAs均不因涨潮、退潮的差异造成质量浓度分布的变化。掌握桐江溪HAAs的含量、时空分布规律及来源,探讨其与水质的相关性,对于净水工艺选择、水厂出水HAAs含量的溯源分析、水体环境风险评估以及研究水生生物体内HAAs的累积效应等有重要意义。
        In order to understand the content, temporal and spatial distribution and source of haloacetic acids(HAAs)inTongjiang River of Fuding City, the HAAs compounds in water were sampled and investigated. According to the hydrological situation and coastal characteristics of Tongjiang River, 10 sampling points were set up. In December 2017 and July 2018, water samples were collected according to the situation of high and low tide, and the distribution of HAAs was detected. At the same time, the correlation between HAAs and water quality characteristics, high and low tide was analyzed. It is found that HAAs are ubiquitous pollutants in Tongjiang River. There are five haloacetic acids(HAA_5): monochloroacetic acid(MCAA), dichloroacetic acid(DCAA), trichloroacetic acid(TCAA), monobromoacetic acid(MBAA) and dibromoacetic acid(DBAA) Acids, with concentrations of 0.44~3.39 μg/L. Nine haloacetic acids(HAA_9) include: MCAA,DCAA,TCAA,MBAA,DBAA,tribromoacetic acid(TBAA), bromoacetic acid(BCAA), bromochloroacetic acid(BDCAA), and chlorodibromoacetic acid(CBDAA), with concentrations of 0.83~56.15 μg/L. The HAAs in Tongjiang River are mainly DCAA, TCAA and TBAA, among which DCAA is caused by the drainage of pharmaceutical factories and hospitals and mainly distributes in the lower reaches; TCAA mainly comes from agricultural production activities in the upper reaches of the river; TBAA is generated by bromide ioninflow from the upstream zeolite tailings reservoir washed by rainwater and mainly distributes in the middle and lower reaches of the river. The results of correlation analysis show that temperature is positively correlated with HAA_5 and HAA_9 concentration, pH is negatively correlated with HAA_5 and HAA_9 concentration, TCAA is higher in upstream and downstream in the same season, different tides and different seasons, and other HAAs do not change in concentration distribution due to the difference of high and low tide. To grasp the content, temporal and spatial distribution and source of HAAs in Tongjiang River and to explore its correlation with water quality are of great significance for water purification process selection, traceability analysis of HAAs content in effluent of waterworks, water environmental risk assessment and Research on accumulation effect of HAAs in aquatic organisms.
引文
[1] SHANGCHAO Y,LEIJUN Z,XIUDUO W,et al.Rejection of haloacetic acids in water by multi-stage reverse osmosis:Efficiency,mechanisms,and influencing factors[J].Water Research,2018,144(7):383-392.
    [2] SAENGCHUTP,KARUCHITS,PENTAMWAP.Investigation of haloacetic acids (HAAs) levels in water supply and its correlated HAAs formation[J].IOP Conference Series:Earth and Environmental Science,2018,164(1):165-171.
    [3] BU Yinan,WANG Liwei,CHEN Baiyang,et al.Effects of typical water components on the UV254 photodegradation kinetics of haloacetic acids in water[J].Separation and Purification Technology,2018,200:255-265.
    [4] RUNMIAO X,HONGLAN S,YINFA M,et al.Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection[J].Chemosphere,2017,189(11):349-356.
    [5] SCOTT B F,SPENCER C,MARVIN C H,et al.Distribution of haloacetic acids in water coumns of the Laurentian Great Lakes and Lake Malawi[J].Enviromental Science & Technology,2002,36(9):1893-1898.
    [6] ZHANG Junzhi,YU Jianwei,AN Wei,et al.Characterization of disinfection byproduct formation potential in 13 source waters in China[J].Journal of Environmental Sciences,2011,23(2):183-188.
    [7] PETERSR J B.Chloroacetic acids in European soils and vegetation[J].Journal of Environment Monitoring,2003,5(2):275-280.
    [8] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002:211-213,566-574.
    [9] 张子秋,罗茜,王东红,等.饮用水中9种卤乙酸的同时测定方法[J].环境化学,2011,30(2):574-576.ZHANG Ziqiu,LUO Qian,WANG Donghong,et al.Simultaneous determination of nine haloacetic acids in drinking water by GC-ECD[J].Environmental Chemistry,2011,30(2):574-576.
    [10] 王坤丽,赵旭,吴丽颖.反相高效液相色谱法快速分析紫脲酸[J].河北工业科技,2015,32(4):318-321.WANG Kunli,ZHAO Xu,WU Liying.Rapid analysis of violuric acid by reversed phase high performance liquid chromatography[J].Hebei Journal of Industrial Science an Technology,2015,32(4):318-321.
    [11] 陈丽珠,巢猛,刘清华,等.臭氧-生物活性炭控制有机物和消毒副产物研究[J].给水排水,2015,41(11):37-40.CHEN Lizhu,CHAO Meng,LIU Qinghua,et al.Study on ozone-biological activated carbon to control organics and disinfection by-products[J].Water & Wastewater Engineering,2015,41(11):37-40.
    [12] HANSON M L,SOLOMON K R.Haloacetic acids in the aquatic environment PartⅠ:Macrophytetoxicity[J].Enviromental Pollution,2004,130(3):371-383.
    [13] HANSON M L,SOLOMON K R.Haloacetic acids in the aquatic environment PartⅡ:Ecological risk assessment[J].Enviromental Pollution,2004,130(3):385-401.
    [14] DAVID AE,MARK LH,PAUL KS,et al.The fate and persistence of triuoroacetic and chloroaceticacids in pond waters[J].Chemosphere,2001,42(2):309-318.
    [15] MARTIN J,FRANKLIN.Detection of chlorodiuoroacetic acid in precipitation:Apossible product of uorocarbondegradation[J].Enviromental Science & Technology,2000,43(2):274-281.
    [16] 闫路娜,王艳,沈洪艳,等.春季石家庄市水体浮游植物群落结构调查与分析[J].河北工业科技,2019,36(3):206-214.YAN Luna,WANG Yan,SHEN Hongyan,et al.Investigation and analysis of phytoplankton community structurein waters of Shijiazhuang City during spring season[J].Hebei Journal of Industrial Science and Technology,2019,36(3):206-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700