用户名: 密码: 验证码:
典型气候条件下东北地区生态系统水源涵养功能特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial analysis of water conservation function in northeast China under different climatic conditions
  • 作者:崔景轩 ; 李秀芬 ; 郑海峰 ; 付尧 ; 张斯屿
  • 英文作者:CUI Jingxuan;LI Xiufen;ZHENG Haifeng;FU Yao;ZHANG Siyu;Shenyang Agricultural University;Northeast Institute of Geography and Agro Ecology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:水源涵养 ; 标准化降水蒸发指数 ; 东北地区 ; SCS模型
  • 英文关键词:water conservation;;SPEI;;Northeast China;;SCS-CN model
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:沈阳农业大学;中国科学院东北地理与农业生态研究所;中国科学院大学;
  • 出版日期:2019-02-27 08:29
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划(2016YFC0500300);; 国家自然科学基金面上项目(41771206);; 中国科学院战略性先导科技专项(XDA19040500)
  • 语种:中文;
  • 页:STXB201909002
  • 页数:13
  • CN:09
  • ISSN:11-2031/Q
  • 分类号:11-23
摘要
东北地区是我国重要的生态功能区,其包含的典型生态系统具有独特的水源涵养功能,在防洪减灾,保障生态安全和人居安全中发挥着关键作用。以往有关水源涵养功能的研究主要是依托不同水文模型方法,从单一年份或多个年份的角度进行研究,较少考虑不同气候条件下水源涵养功能的空间分异特征。采用标准化降水蒸散发指数(Standardized Precipitation Evapotranspiration Index,SPEI)划分研究区的典型气候年份(干旱、正常和湿润);基于水量平衡法,结合SCS-CN模型以及Penman-Monteith方程对东北地区典型气候条件下生长季内的水源涵养功能进行研究。结果表明:(1)研究区水源涵养功能在不同气候条件下差异明显,三个典型气候年份生长季内的水源涵养总量分别为:干旱年(SPEI=-1.26)为2214.64亿m~3、正常年(SPEI=-0.22)为3231.49亿m~3和湿润年(SPEI=1.05)为3969.33亿m~3。(2)水源涵养功能空间变异突出,但在三种典型气候条件下呈现出一致变化,均表现为长白山地区水源涵养量最大,大小兴安岭地区次之,水源涵养量最低的地方主要出现在呼伦贝尔以西的草原地区,在东北平原的部分地区也有低值的出现,如白城、通辽、鸡西等地区,水源涵养量较一般的地方出现在东北平原大部分以农田为主的地区。(3)水源涵养功能除受气候因素的影响外,还取决于土地利用类型的变化,对于整个东北地区来讲,水源涵养总量表现为林地>农田>草地>湿地,单位面积水源涵养量在干旱年和正常年表现为林地>农田>湿地>草地,在湿润年份表现为林地>湿地>农田>草地。研究结果揭示了东北地区三种典型气候条件下重要生态系统的水源涵养功能大小、空间分布特征及其主要驱动因素,可为区域生态空间规划和生态系统管理提供科学指导。
        Northeast China is one of the important ecological functional areas in China. There are several types of ecosystems in the region and each has its unique water conservation function. Ecosystems are known to play a significant role in flood control and disaster reduction, as well as provide ecological and human settlement security. Previous studies on water conservation function have depended mainly on different hydrological models with varying temporal scales; however, few studies have investigated the spatial distribution of water conservation function under different climatic conditions. In the present study, a standardized precipitation evaporation index(SPEI) was used to select the typical climate years(dry, normal, and wet) for the study area. The water conservation function under different climatic conditions was analyzed based on the water balance method, the SCS-CN model, and the Penman-Monteith equation. The results indicated that the total amount of water conservation in the growing seasons varied significantly under different climatic conditions in northeast China. They were 221.464, 323.149, and 396.933 billion m~3 in the dry(SPEI=-1.26), normal(SPEI=-0.22), and wet year(SPEI=1.05), respectively. The Changbai mountain area had the highest water conservation function, followed by the Daxing′an and Xiaoxing′an Mountain areas. The lowest water conservation quantity was distributed mainly in the pasture area in the west of Hulunbuir. Some areas of the Northeast Plain also had low water conservation such as Baicheng, Tongliao, and Jixi. Moreover, the areas of farmland plain, located in the middle, south, and east of northeast China such as most areas of Songnen, Liaohe, and Sanjiang plains had moderate water conservation function. Both climatic conditions and land-use types affected the extent of water conservation. The total amount of water conservation followed the order of forest > cropland > grassland > wetland. In dry and normal years, land use dramatically affected the average water conservation capacity per area in the order of forest > cropland > wetland > grassland. In contrast, the order of the value for wet years is forest > wetland > farmland > grassland. These results reveal the quantity, spatial distribution, and main driving factors for water conservation in important ecosystems under three typical climates in the northeast of China. This provides scientific guidance for regional ecological space planning and ecosystem management.
引文
[1] 欧阳志云,郑华.生态系统服务的生态学机制研究进展.生态学报,2009,29(11):6183- 6188.
    [2] Ning J,Liu J Y,Zhao G S.Spatio-temporal characteristics of disturbance of land use change on major ecosystem function zones in China.Chinese Geographical Science,2015,25(5):523- 536.
    [3] 秦大河.气候变化科学与人类可持续发展.地理科学进展,2014,33(7):874- 883.
    [4] Ouyang Z Y,Zheng H,Xiao Y,Polasky S,Liu J G,Xu W H,Wang Q,Zhang L,Xiao Y,Rao E M,Jiang L,Lu F,Wang X K,Yang G B,Gong S H,Wu B F,Zeng Y,Yang W,Daily G C.Improvements in ecosystem services from investments in natural capital.Science,2016,352(6292):1455- 1459.
    [5] Zhang P C,Shao G F,Zhao G,Le Master D C,Parker G R,Dunning J B Jr,Li Q L.China′s forest policy for the 21st century.Science,2000,288(5474):2135- 2136.
    [6] Xu W H,Xiao Y,Zhang J J,Yang W,Zhang L,Hull V,Wang Z,Zheng H,Liu J G,Polasky S,Jiang L,Xiao Y,Shi X W,Rao E M,Lu F,Wang X K,Daily G C,Ouyang Z Y.Strengthening protected areas for biodiversity and ecosystem services in China.Proceedings of the National Academy of Sciences of the United States of America,2017,114(7):1601- 1606.
    [7] 聂忆黄.基于地表能量平衡与SCS模型的祁连山水源涵养能力研究.地学前缘,2010,17(3):269- 275.
    [8] 王玉纯,赵军,付杰文,魏伟.石羊河流域水源涵养功能定量评估及空间差异.生态学报,2018,38(13):4637- 4648.
    [9] Fan M,Shibata H,Chen L.Spatial conservation of water yield and sediment retention hydrological ecosystem services across Teshio watershed,northernmost of Japan.Ecological Complexity,2018,33:1- 10.
    [10] Su C H,Fu B J.Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes.Global and Planetary Change,2013,101:119- 128.
    [11] 吕一河,胡健,孙飞翔,张立伟.水源涵养与水文调节:和而不同的陆地生态系统水文服务.生态学报,2015,35(15):5191- 5196.
    [12] 张彪,李文华,谢高地,肖玉.森林生态系统的水源涵养功能及其计量方法.生态学杂志,2009,28(3):529- 534.
    [13] Wakode H B,Baier K,Jha R,Azzam R.Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad,India.International Soil and Water Conservation Research,2018,6(1):51- 62.
    [14] 龚诗涵,肖洋,郑华,肖燚,欧阳志云.中国生态系统水源涵养空间特征及其影响因素.生态学报,2017,37(7):2455- 2462.
    [15] 陈丽,郝晋珉,陈爱琪,李牧,高阳,管青春,王宏亮.基于二元水循环的黄淮海平原耕地水源涵养功能研究.生态学报,2017,37(17):5871- 5881.
    [16] Vicente-Serrano S M,Gouveia C,Camarero J J,Beguería S,Trigo R,López-Moreno J I,Azorín-Molina C,Pasho E,Lorenzo-Lacruz J,Revuelto J,Morán-Tejeda E,Sanchez-Lorenzo A.Response of vegetation to drought time-scales across global land biomes.Proceedings of the National Academy of Sciences of the United States of America,2013,110(1):52- 57.
    [17] 赵秀兰.近50年中国东北地区气候变化对农业的影响.东北农业大学学报,2010,41(9):144- 149.
    [18] Yu M X,Li Q F,Hayes M J,Svoboda M D,Heim R R.Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index:1951- 2010 International Journal of Climatology,2014,34(3):545- 558.
    [19] 徐一丹,任传友,马熙达,赵冬妮,陈伟.基于SPI/SPEI指数的东北地区多时间尺度干旱变化特征对比分析.干旱区研究,2017,34(6):1250- 1262.
    [20] 沈国强,郑海峰,雷振锋.基于SPEI指数的1961- 2014年东北地区气象干旱时空特征研究.生态学报,2017,37(17):5882- 5893.
    [21] 孙滨峰,赵红,王效科.基于标准化降水蒸发指数(SPEI)的东北干旱时空特征.生态环境学报,2015,24(1):22- 28.
    [22] 刘志红,Li L T,McVicar T R,Van Niel T G,杨勤科,李锐.专用气候数据空间插值软件ANUSPLIN及其应用.气象,2008,34(2):92- 100.
    [23] 蔡福,于慧波,矫玲玲,唐凯,明惠青,刘兵.降水要素空间插值精度的比较——以东北地区为例.资源科学,2006,28(6):73- 79.
    [24] Allen R G,Pereira L S,Raes D,Smith M.Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements.FAO Irrigation and Drainage Paper No.56.Rome:FAO,1998.
    [25] Huang M B,Gallichand J,Wang Z L,Goulet M.A modification to the Soil Conservation Service curve number method for steep slopes in the Loess Plateau of China.Hydrological Processes,2006,20(3):579- 589.
    [26] Tiwari K,Goyal R,Sarkar A.GIS-based methodology for identification of suitable locations for rainwater harvesting structures.Water Resources Management,2018,32(5):1811- 1825.
    [27] 王瑾杰,丁建丽,张喆,邓凯,陈文倩,张成.奎屯河流域春季融雪期SCS-CN模型参数取值方法.生态学报,2017,37(13):4456- 4465.
    [28] Ponce V M,Hawkins R H.Runoff curve number:has it reached maturity?Journal of Hydrologic Engineering,1996,1(1):11- 19.
    [29] USDA Soil Conservation Service.National Engineering Handbook,Supplement A,Section 4,Chapter 10.Washington,DC:USDA,1985.
    [30] 史培军,袁艺,陈晋.深圳市土地利用变化对流域径流的影响.生态学报,2001,21(7):1041- 1049.
    [31] 陈正维,刘兴年,朱波.基于SCS-CN模型的紫色土坡地径流预测.农业工程学报,2014,30(7):72- 81.
    [32] Sharpley A N,Williams J R.EPIC-Erosion/Productivity Impact Calculator:1.Model Documentation.USA Department of Agriculture Technical Bulletin No.1768.Washington,DC:USDA,1990.
    [33] 丁程锋,张绘芳,李霞,李伟涛,高亚琪.天山中部云杉天然林水源涵养功能定量评估——以乌鲁木齐河流域为例.生态学报,2017,37(11):3733- 3743.
    [34] 张杰,钱维宏,丁婷.东北地区5- 9月降水特征和趋势分析.气象,2010,36(8):1- 7.
    [35] 刘正佳,于兴修,王丝丝,商贵铎.薄盘光滑样条插值中三种协变量方法的降水量插值精度比较.地理科学进展,2012,31(1):56- 62.
    [36] 税伟,白剑平,简小枚,祁新华,苏正安,陈勇,蔡应君.若尔盖沙化草地恢复过程中土壤特性及水源涵养功能.生态学报,2017,37(1):277- 285.
    [37] 周佳雯,高吉喜,高志球,杨伟超.森林生态系统水源涵养服务功能解析.生态学报,2018,38(5):1679- 1686.
    [38] 周蕾,王绍强,陈镜明,冯险峰,居为民,伍卫星.1991年至2000年中国陆地生态系统蒸散时空分布特征.资源科学,2009,31(6):962- 972.
    [39] 贺添,邵全琴.基于MOD16产品的我国2001- 2010年蒸散发时空格局变化分析.地球信息科学学报,2014,16(6):979- 988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700