用户名: 密码: 验证码:
长白落叶松人工林有效冠高的确定及其影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination and analysis of height to effective crown for planted Larix olgensis trees
  • 作者:白东雪 ; 刘强 ; 董利虎 ; 李凤
  • 英文作者:Bai Dongxue;Liu Qiang;Dong Lihu;Li Fengri;Key Laboratory of Sustainable Forest Ecosystem Management of Ministry of Education, School of Forestry,Northeast Forestry University;
  • 关键词:叶生物量 ; 有效冠高 ; 累积垂直分布 ; 光合累积碳量 ; 长白落叶松
  • 英文关键词:leaf mass;;height to effective crown;;cumulative vertical distribution;;photosynthetic carbon accumulation;;Larix olgnesis
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:东北林业大学林学院森林生态系统可持续经营教育部重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:北京林业大学学报
  • 年:2019
  • 期:v.41
  • 基金:国家重点研发计划课题(2017YFD0600402);; 长白落叶松高效培育技术省级资助项目(GX18B041)
  • 语种:中文;
  • 页:BJLY201905008
  • 页数:12
  • CN:05
  • ISSN:11-1932/S
  • 分类号:80-91
摘要
【目的】以黑龙江省长白落叶松人工林为研究对象,分别从光合作用机理角度以及树干断面积生长量与叶生物量垂直分布规律角度提出了有效冠高(HEC)的确定方法,并分析了影响有效冠高的主要因子。【方法】首先,根据3株光合作用测定样木不同轮层枝叶在生长季内光合累积碳量对树干的贡献量判定有效冠位置,并分析该位置与累积叶生物量垂直分布的关系,提出基于累积叶生物量垂直分布判定有效冠位置的标准。其次,采用传统方法,通过分析树干断面积增长量与叶生物量的实际垂直分布规律,判定有效冠高。最后,根据实测的19块标准地133株解析木数据,对比两种方法判定的有效冠高的差异,确定有效冠高的判断依据,并分析有效冠高与林木因子及林分因子的关系。【结果】树冠中各轮层枝叶对树干的净碳贡献量随相对着枝深度(RDINC)的增加表现为"单峰"形式的变化趋势,将净碳贡献量大于0的轮层及以上部分确定为有效冠。3株光合样木有效冠高存在一定差异,分别为2.84、4.73和4.38 m,但有效冠位置对应的相对累积叶生物量分别为87%、90%和86%,均接近于90%,因此,可以采用相对累积叶生物量为90%处的位置作为判定有效冠位置的依据。相较于该方法,采用分析断面积增长量和叶生物量垂直分布规律判定HEC位置的方法虽然存在一定差异,但二者的差异并不显著。林分年龄(Age)是与HEC相关性最高的林分因子,二者呈线性正相关,相关系数达到0.8;单木因子中,接触高(CH)和树高(H)与HEC呈显著的线性正相关关系,相关系数为0.9左右。林分密度(SD)和竞争指数(CI)与HEC呈负相关,但该现象主要是受Age、CH和H的影响。【结论】采用相对叶生物量累积达到总叶生物量90%所对应的位置作为判定有效冠的依据具有一定可行性,处于该位置之上的相邻轮枝的高度即为有效冠高。有效冠长占总冠长的比例平均为四分之三,最小值为二分之一,本研究结果为长白落叶松幼龄林的人工整枝提供了科学依据。
        [Objective] Based on the data of planted Larix olgensis trees in Heilongjiang Province of northeastern China, the height of effective crown(HEC) was respectively determined from the principle of photosynthate allocation and the vertical distribution of the trunk basal area increment and the leaf mass. The influencing factors of HEC were also analyzed. [Method] First, HEC was determined according to the contribution of carbon from branches in each pseudo-whorl to trunk, based on the data of three photosynthetic sample trees during the growing season. The relationship between HEC and the vertical distribution of cumulative leaf mass was analyzed, and the rule for determining HEC was defined according to the vertical distribution of cumulative leaf mass. Then, HEC was also judged by comprehensive analysis of the vertical distributions of the trunk basal area increment and the leaf weight by adopting traditional method. Finally, according to the data of 133 branch analysis sample trees in 19 standard plots from different stand conditions, the difference of HEC determined by above two methods was compared, and consequently the judgment basis for HEC was determined. The main influencing factors and changing rules of HEC were analyzed. [Result] The net carbon contribution of branches in each pseudo-whorl exhibited an "unimodal"curve with the increment of relative depth into crown(RDINC). The effective crown was consisted of the branches having positive contribution to trunk. The HEC of three photosynthetic samples were 2.84 m, 4.73 m and 4.38 m, respectively. But the relative cumulative leaf mass corresponding to HEC was 87%, 90% and86%, which were close to 90%. Thus, it could be the principle of HEC determination. Comparted to above method, although there were some differences of the HEC determined according to the vertical distributions of the trunk basal area increment and the leaf weight, the differences between the two were not significant.Stand age(Age) showed the strongest correlation with HEC among all stand factors, it was linearly and positively correlated with HEC and the correlation coefficient was up to 0.8. The mean crown contact height of neighboring trees(CH) and tree height(H) exhibited a significant linear and positive correlation with HEC, and their correlations were about 0.9. Stand density(SD) and competition index(CI) were negatively correlated with HEC, but these were mainly diven by Age, CH and H. [Conclusion] It was feasible to use the height of the adjacent pseudo-whorl above the position that relative cumulative leaf mass was up to 0.9 from treetop to the base of crown as HEC. The mean and minimum values of the ratio of effective crown length to whole crown length were 3/4 and 1/2, respectively. Our results provide a scientific basis for artificial pruning of young Larix olgensis forest.
引文
[1]Moller C M.The influence of pruning on the growth of conifers[J].Forestry an International Journal of Forest Research,1960,33(1):37-53.
    [2]Woodman J N.Variation of net photosynthesis within the crown of a large forest-grown conifer[J].Journal of Parasitology,1971,5(1):50-54.
    [3]Oliver,Larson C D,Bruce C.Forest stand dynamics:updated edition[J/OL].Forest Stand Dynamics Updated Edition,1996[2019-03-02].http://xueshu.baidu.com/usercenter/paper/show?paperid=ef7a66579e5d888f1b7b9f0bec083cb2&sitexueshu_se&hi tartile=1.
    [4]王迪生,宋新民.一个新的单木竞争指标-相对有效冠幅比[J].林业科学研究,1994,7(3):337-341.Wang D X,Song X M.A new single-tree competition measure:relative effective crown ratio[J].Forest Research,1994,7(3):337-341.
    [5]李凤日,王治富,王保森.落叶松人工林有效冠动态研究(Ⅰ):有效冠的确定[J].东北林业大学学报,1996,24(1):1-8.Li F R,Wang Z F,Wand B S.Studies on the effective crown development of Larix Olgensis(Ⅰ),determination of the effective crown[J].Journal of Northeast Forestry University,1996,24(1):1-8.
    [6]Raulier F,Ung C H,Ouellet D.Influence of social status on crown geometry and volume increment in regular and irregular black spruce stands[J].Canadian Journal of Forest Research,1996,26(10):1742-1753.
    [7]Hann D W.An adjustable predictor of crown profile for standgrown Douglas-fir trees[J].Forest Science,1999,45(2):217-225.
    [8]李露.基于节子属性的落叶松人工林有效冠高及整枝技术的研究[D].哈尔滨:东北林业大学,2013.Li L.Study on effective crown height and pruning technology of Larix olgensis Based on knot properties[D].Harbin:Northeast Forestry University,2013.
    [9]Utsugi H,Araki M,Kawaski T,et al.Vertical distributions of leaf area and inclination angle,and their relationship in a 46-year-old Chamaecyparis obtusa stand[J].Forest Ecology&Management,2006,225(1-3):104-112.
    [10]卢军,李凤日,张会儒,等.帽儿山天然次生林主要阔叶树种叶生物量分布模拟[J].林业科学,2011,47(6):70-76.Lu J,Li F R,Zhang H R,et al.A crown ratio model for dominant species in secondary forests in Mao’er Mountain[J].Scientia Silvae Sinicae,2011,47(6):70-76.
    [11]Olive C D,Larson B C.Forest stand dynamics[J/OL].Quarterly Review of Biology,1990[2019-02-20].https://www.researchgate.net/publication/285030458_Forest_Stand_Dynamics.
    [12]Xu M,Harrington T B.Foliage biomass distribution of loblolly pine as affected by tree dominance,crown size,and stand characteristics[J].Revue Canadienne De Recherche Forestière,1998,28(6):887-892.
    [13]Maguire D A,Bennett W S.Patterns in vertical distribution of foliage in young coastal Douglas-fir[J].Canadian Journal of Forest Research,1996,26(11):1991-2005.
    [14]闫明淮,刘兆刚.樟子松人工林单木叶生物量垂直分布规律[J].东北林业大学学报,2009,37(7):16-24.Yan M H,Liu Z G.Foliage vertical distribution of mongolian pine plantations[J].Journal of Northeast Forestry University,2009,37(7):16-24.
    [15]Jerez M,Dean,T J,Cao Q V,et al.Describing leaf area distribution in loblolly pine trees with Johnson’s SB function[J].Forest Science,2005,4(2):93-101.
    [16]Massman WJ.Foliage distribution in old-growth coniferous tree canopies[J].Canadian Journal of Forest Research,1982,12(1):10-17.
    [17]Yang X,Miller D R,Montgomery M E.Vertical distributions of canopy foliage and biologically active radiation in a defoliated/refoliated hardwood forest[J].Agricultural&Forest Meteorology,1993,67(1-2):129-146.
    [18]?ermák J,Roberto T,Nadezhda N,et al.Stand structure and foliage distribution in Quercus pubescens and Quercus cerris forests in Tuscany(central Italy)[J].Forest Ecology&Management,2008,255(5):1810-1819.
    [19]Nelson A S,Weiskittel A R,Wagner R G.Development of branch,crown,and vertical distribution leaf area models for contrasting hardwood species in Maine,USA[J].Trees,2014,28(1):1-14.
    [20]马钦彦,刘志刚,潘向丽,等.华北落叶松人工林生长季内的林冠结构和光分布[J].北京林业大学学报,2000,22(4):18-21.Ma Q Y,Liu Z G,Pan X L,et al.A study on the canopy structure and light distribution of Larix principis-ruppurechtii during the growing season[J].Journal of Beijing Forestry University,2000,22(4):18-21.
    [21]Wang Y P,Jarvis P G.Influence of crown structural properties on PAR absorption,photosynthesis,and transpiration in Sitka spruce:application of a model(MAESTRO)[J].Tree Physiology,1990,7(1-4):297-316.
    [22]Saito S,Sato T and Kominami Y,et al.Modeling the vertical foliage distribution of an individual Castanopsis cuspidata(Thunb.)Schottky,a dominant broad-leaved tree in Japanese warm-temperate forest[J].Trees,2004,18(4):486-491.
    [23]张小全,赵茂盛,徐德应.杉木中龄林树冠叶面积密度空间分布及季节变化[J].林业科学研究,1999,12(6):612-619.Zhang X Q,Zhao M S,Xu D Y.Spatial Distribution and seasonal changes of needle-leaf area density within 17-year-old Chinese fir crown[J].Forest Research,1999,12(6):612-619.
    [24]高慧淋,董利虎,李凤日.基于混合效应的人工落叶松树冠轮廓模型[J].林业科学,2017,53(3):84-93.Gao H L,Dong L H,Li F R.Crown shape model for Larix olgensis plantation based on mixed effect[J].Scientia Silvae Sinicae,2017,53(3):84-93.
    [25]刘强,董利虎,李凤日,等.长白落叶松冠层光合作用的空间异质性[J].应用生态学报,2016,27(9):2789-2796.Liu Q,Dong L H,Li F R,et al.Spatial heterogeneity of canopy photosynthesis for Larix olgensis[J].Chinese Journal of Applied Ecology,2016,27(9):2789-2796.
    [26]Liu Q,Li F R.Spatial and seasonal variations of standardized photosynthetic parameters under different environmental conditions for young planted Larix olgensis Henry trees[J/OL].Forests,2018,9(9):522[2019-01-05].https://doi.org/10.3390/f9090522.
    [27]Q.Liu,L.H.Dong,F.R.Li.Modeling net CO2 assimilation(AΝ)within the crown of young planted Larix olgensis trees[J].Canadian Journal of Forest Research,2018,48:1085-1098.
    [28]Hegyi F.A simulation model for managing jack-pine stands[C]//Fries J.Growth models for tree and stand simulation.Stoekholm:Royal College of Forestry,1974:74-90.
    [29]邹春静,韩士杰,张军辉.阔叶红松林树种间竞争关系及其营林意义[J].生态学杂志,2001,20(4):35-38.Zou C J,Han S J,Zhang J H.Competition relationship among tree species in broadleaved Korean pine mixed forest and its significance for managing the forest[J].Chinese Journal of Ecology,2001,20(4):35-38.
    [30]邱学清,陈善治.杉木人工林竞争指数及单木生长模型的研究[J].森林与环境学报,1992(3):309-316.Qiu X Q,Chen S Z.Study of competitive index and individual growing model of Chinese fir plant population[J].Journal of Forestry and Environment,1992(3):309-316.
    [31]Springmann S,Rogers R,Spiecker H.Impact of artificial pruning on growth and secondary shoot development of wild cherry(Prunus avlum L.)[J].Forest Ecology&Management,2011,261(3):764-769.
    [32]Xu P.Estimating the influence of knots on the local longitudinal stiffness in radiata pine structural timber[J].Wood Science and Technology,2002,36(6):501-509.
    [33]Lam F,Barrett J D,Nakajima S.Influence of knot area ratio on the bending strength of Canadian Douglas fir timber used in Japanese post and beam housing[J].Journal of Wood Science,2005,51(1):18-25.
    [34]贾炜玮.樟子松人工林枝条生长及节子大小预测模型的研究[D].哈尔滨:东北林业大学,2006.Jia W W.Prediction model of branch growth and knot size of mongolian pine plantation[D].Harbin:Northeast Forestry University,2006.
    [35]李焱龙,李凤日,贾炜玮,等.落叶松人工林整枝研究[J].森林工程,2011,27(2):1-4.Li Y L,Li F R,Jia W W,et al.Pruning of Larix olgensis plantations[J].Forest Engineering,2011,27(2):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700