用户名: 密码: 验证码:
铅锌矿集区7种草本植物对重金属的富集效果
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Absorption and enrichment effects of herbaceous species on soil heavy metals in the Youxi lead-zinc mining area
  • 作者:赵雅曼 ; 陈顺钰 ; 李宗勋 ; 韩航 ; 侯晓龙 ; 蔡丽平
  • 英文作者:ZHAO Yaman;CHEN Shunyu;LI Zongxun;HAN Hang;HOU Xiaolong;CAI Liping;College of Forestry,Fujian Agriculture and Forestry University;Co-innovation Center for Soil and Water Conservation in Red Soil Region of the Cross-straits;
  • 关键词:尤溪铅锌矿集区 ; 重金属 ; 植物修复 ; 转运系数 ; 富集
  • 英文关键词:Youxi lead-zinc mining area;;heavy metals;;phytoremediation;;translocation factor;;bioconcentration
  • 中文刊名:FJLB
  • 英文刊名:Journal of Forest and Environment
  • 机构:福建农林大学林学院;海峡两岸红壤区水土保持协同创新中心;
  • 出版日期:2019-05-15
  • 出版单位:森林与环境学报
  • 年:2019
  • 期:v.39
  • 基金:福建省科技厅重点项目(2017Y0001);; 福建省环保科技计划项目(2018R012);; 福建农林大学科技创新专项基金项目(CXZX2018126、CXZX2018137)
  • 语种:中文;
  • 页:FJLB201903002
  • 页数:9
  • CN:03
  • ISSN:35-1327/S
  • 分类号:10-18
摘要
为筛选出可用于修复土壤重金属污染的植物种类,采集矿区主要分布的7种草本(芦苇、芒萁、笔管草、乌蕨、乌毛蕨、藿香蓟和毛蕨)及植物采样点的表层土壤(0~30 cm),测定采集植物地上和地下部分及采样点土壤重金属含量(Cd、Pb、Zn和Cu),分析7种草本对重金属的富集效果。结果表明:采样点土壤Cd、Pb、Zn和Cu平均含量均超过国家土壤环境质量标准和福建省土壤背景值,其中Cd分别超标21.77和604.60倍,污染最为严重;芦苇地上部分Pb含量、富集系数和转运系数均达到Pb超富集植物的标准,对Cd和Cu也有强的富集能力,其转运和富集系数均大于1;藿香蓟对Cd和Cu有较强的吸收能力,且对这两种重金属的转运和富集系数均大于1,是Cd和Cu的潜在富集植物;笔管草和乌蕨对Cd、Pb、Zn和Cu具有一定吸收能力,且转运系数均大于1,对被此4种重金属污染的土壤具有一定的修复能力,但富集系数均小于1;乌毛蕨和毛蕨的重金属吸收、富集能力相对较弱;随土壤重金属含量的增加,芒萁体内重金属含量、转运和富集系数未显示明显规律,芒萁对Cd、Pb和Cu均具有较强的吸收能力,且对这3种重金属的转运系数和富集系数均大于1,是潜在的多金属富集植物。
        The objective of this study was to screen plant species that can be used to remediate heavy metal polluted soil. For this purpose,the contents of heavy metals( Cd,Pb,Zn,and Cu) in 7 herbaceous plant species( Phragmites australis,Dicranopteris dichotoma,Equisetum ramosissimum,Stenoloma chusanum,Blechnum orientale,Ageratum conyzoides,and Cyclosorus interruptus),which were naturally growing in a mined area and in the rhizosphere soil( 0-30 cm) were determined. The coefficients of translocation and bioaccumulation of the heavy metals by the plants were evaluated. The results showed that the average contents of Cd,Pb,Zn,and Cu in the soil at the sampling area were higher than the national soil environmental quality standard and soil background value of the Fujian Province; Cd pollution was the most serious among the heavy metals assessed,exceeding the abovementioned standard values by 21. 77 and 604. 60 times, respectively. The Pb content, translocation factors, and bioconcentration factors of P. australis in the aboveground biomass reached the standard of a Pb hyper-accumulator and also had a strong Cd and Cu accumulation ability. The Cd and Cu translocation and bioconcentration factors of A. conyzoides were both greater than 1,which indicated a potential polymetallic accumulation ability for Cd and Cu. E. ramosissimum and S. chusanum had a certain absorption capacity for Cd,Pb,Zn,and Cu. Additionally,the translocation factors for E. ramosissimum and S. chusanum reached the standard of hyper-accumulator plants,but its bioconcentration factors were less than 1; thus,they have a certain ability to remediate soil polluted by the four heavy metals. The heavy metal absorption and accumulation abilities of B. orientale and C. interruptus were relatively weak,which suggests that these species could be heavy metal excluders. The contents and transport and enrichment coefficients of heavy metals in D. dichotoma did not uniformly increase with an increase in the heavy metal contents of the soil. However,D. dichotoma did have a strong absorption capacity for Cd, Pb, and Cu, for which the translocation and bioconcentration factors were all greater than 1. In conclusion,P. australis,A. conyzoides,E. ramosissimum,S. chusanum,and D. dichotoma are hyper-accumulators that are suitable for phytoremediation of heavy metal polluted soils. Tentatively,B. orientale and C. interruptus could be heavy metal excluders,but further research is needed to confirm this proposition.
引文
[1]徐华伟,张仁陟,谢永.铅锌矿区先锋植物野艾蒿对重金属的吸收与富集特征[J].农业环境科学学报,2009,28(6):1 136-1 141.
    [2]郭世鸿,马祥庆,侯晓龙,等.铅锌矿冶炼厂周边土壤重金属分布特征与生态污染评价[C]∥农业环境与生态安全---第五届全国农业环境科学学术研讨会论文集.南京:农业部环境保护科研监测所,中国农业生态环境保护协会,2013:8.
    [3]RASCIO N,NAVARI-IZZO F.Heavy metal hyperaccumulating plants:how and why do they do it?And what makes them so interesting[J].Plant Science,2011,180(2):169-181.
    [4]串丽敏,赵同科,郑怀国,等.土壤重金属污染修复技术研究进展[J].环境科学与技术,2014,37(120):213-222.
    [5]刘周莉,何兴元,陈玮.忍冬:一种新发现的镉超富集植物[J].生态环境学报,2013,22(4):666-670.
    [6]屈冉,孟伟,李俊生,等.土壤重金属污染的植物修复[J].生态学杂志,2008,27(4):626-631.
    [7]常青山.重金属超富集植物的筛选与螯合吸附研究[D].福州:福建农林大学,2005.
    [8]刘国锋.重金属矿区铅污染特征及铅富集植物的筛选研究[D].福州:福建农林大学,2006.
    [9]张骁勇.尤溪铅锌矿区重金属的迁移和分布研究[D].福州:福建农林大学,2012.
    [10]王学礼,常青山,侯晓龙,等.三明铅锌矿区植物对重金属的富集特征[J].生态环境学报,2010,19(1):108-112.
    [11]邓佳.南方红壤区常见草本根土复合体生物力学抗蚀机理研究[D].武汉:华中农业大学,2015.
    [12]叶超,郭忠录,蔡崇法,等.5种草本植物根系理化特性及其相关性[J].草业科学,2017,34(3):598-606.
    [13]吴浩,卢志军,黄汉东,等.三种植物对土壤磷吸收和富集能力的比较[J].植物生态学报,2015,39(1):63-71.
    [14]WILDING L P.Spatial variability:its documentation,accommodation and implication to soil surveys[M]∥NIELSEN D R,BOUMA J.Soil Spatial Variability.Wageningen:Pudoc,1985:166-194.
    [15]生态环境部,国家市场监督管理总局.土壤环境质量农用地土壤污染风险管控标准(试行):GB 15618-2018[S].北京:中国环境出版社,2018.
    [16]陈振金,陈春秀,刘用清,等.福建省土壤环境背景值研究[J].环境科学,1992,13(4):70-75.
    [17]BAKER A J M,BROOKS R R,PEASE A J,et al.Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L.(Caryophyllaceae)from Za6re[J].Plant and Soil,1983,73(3):377-385.
    [18]MATTINA M I,LANNUCCI-BERGER W,MUSANTE C,et al.Concurrent plant uptake of heavy metals and persistent organic pollutants from soil[J].Environmental Pollution,2003,124(3):375-378.
    [19]彭克俭.矿业废弃地植物对重金属的积累及其机理的初步研究[D].南京:南京农业大学,2006.
    [20]张富运.铅锌尾矿库耐性植物的筛选及其耐性机理初步研究[D].长沙:中南林业科技大学,2014.
    [21]王会方,於朝广,王涛,等.硅缓解植物重金属毒害机理的研究进展[J].云南农业大学学报(自然科学),2016,31(3):528-535.
    [22]任秀娟,朱东海,吴大付,等.湖南南部铅锌矿区铅锌富集植物筛选研究[J].生态环境学报,2014,23(4):669-672.
    [23]葛绪广,张欢欢,陈琳,等.矿区蕨类植物重金属富集性调查研究:以黄石国家矿山公园为例[J].湖北师范大学学报(自然科学版),2017,37(1):8-11.
    [24]李有志,罗佳,张灿明,等.湘潭锰矿区植物资源调查及超富集植物筛选[J].生态学杂志,2012,31(1):16-22.
    [25]赵玉红,敬久旺,王向涛,等.藏中矿区先锋植物重金属积累特征及耐性研究[J].草地学报,2016,24(3):598-603.
    [26]董志成,鲍征宇,谢淑云,等.湿地芦苇对有毒重金属元素的抗性及吸收和累积[J].地质科技情报,2008,27(1):80-84.
    [27]路畅,王英辉,杨进文.广西铅锌矿区土壤重金属污染及优势植物筛选[J].土壤通报,2010,41(6):1 471-1 475.
    [28]苏芳莉,周欣,陈佳琦,等.芦苇湿地生态系统对造纸废水中铅的净化研究[J].中国环境科学,2011,31(5):768-773.
    [29]刘足根,杨国华,杨帆,等.赣南钨矿区土壤重金属含量与植物富集特征[J].生态学杂志,2008,27(8):1 345-1 350.
    [30]潘义宏,王宏镔,谷兆萍,等.大型水生植物对重金属的富集与转移[J].生态学报,2010,30(23):6 430-6 441.
    [31]CLEMENS S.Toxic metal accumulation,responses to exposure and mechanisms of tolerance in plants[J].Biochimie,2006,88(11):1 707-1 719.
    [32]方月梅,张晓玲,刘娟,等.湖北省铜绿山矿区农业土壤重金属形态及生物有效性[J].地球与环境,2017,45(6):634-642.
    [33]吴婷,李小平,蔡月,等.铅污染不同粒径土壤的重金属地球化学行为与风险[J].中国环境科学,2017,37(11):4 212-4 221.
    [34]曾懋华,曾庆宏,曾葭桂.某冶炼厂附近藿香蓟对重金属的富集[J].现代矿业,2016,32(10):83-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700