用户名: 密码: 验证码:
氢气在微燃烧器内的能源转化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy Conversion of Hydrogen in Micro-combustor
  • 作者:张文珺 ; 陈威
  • 英文作者:ZHANG Wenjun;CHEN Wei;School of Energy,Soochow University;
  • 关键词:微燃烧器 ; 淬火直径 ; 当量比 ; 能量转化效率
  • 英文关键词:micro-combustor;;quenching diameter;;equivalence ratio;;energy conversion efficiency
  • 中文刊名:GYJR
  • 英文刊名:Industrial Heating
  • 机构:苏州大学能源学院;
  • 出版日期:2019-04-30
  • 出版单位:工业加热
  • 年:2019
  • 期:v.48;No.268
  • 语种:中文;
  • 页:GYJR201902004
  • 页数:5
  • CN:02
  • ISSN:61-1208/TM
  • 分类号:18-22
摘要
采用MATLAB程序建立了带有余热回收的微燃烧器的一维数值模型,计算了TPV(thermo-photovoltaic)系统中化学能转化为电能的能量转化效率。探讨微燃烧器中氢气在空气和纯氧条件下的燃烧特性,研究了当量比、内管直径、进气速度和传热系数对微燃烧器燃烧性能的影响。结果表明,当当量比为1时,氢气在纯氧下的淬火直径(0.065 mm)比在空气中(0.1 mm)小;当当量比为1,内管直径为0.5 mm时,在TPV系统中,氢气在纯氧下的能量转化效率(6.3%)比在空气中(1.6%)高。
        A one-dimensional numerical model of micro-combustor with waste heat recovery was developed by using MATLAB program. The conversion efficiency of chemical energy into electric energy in thermal photovoltaic system was calculated. The combustion characteristics of hydrogen in micro-combustor under air and pure oxygen conditions were investigated. The effects of equivalence ratio, inner tube diameter, inlet velocity and heat transfer coefficient on the combustion performance of micro-combustor were studied. The results show that when the equivalence ratio is 1, the quenching diameter of hydrogen in pure oxygen(0.065 mm) is smaller than that in air(0.1 mm); when the equivalence ratio is 1 and the inner tube diameter is 0.5 mm, the energy conversion efficiency of hydrogen in pure oxygen(6.3%) is higher than that in air(1.6%).
引文
[1] XU K,LIU M H,ZHAO P H. Stability of Lean Combustion in Mini-Scale Porous Media Combustor with Heat Recuperation[J].Chemical Engineering and Processing:Process Intensification,2011,50(7):608-613.
    [2]薛元,陈剑波,姚强.超微型燃烧器的研究现状及进展[J].燃气轮机技术,2002,15(1):22-40.
    [3] YANG W M,CHOU S K,CHUA K J,et al. Research on Modular Micro Combustor-Radiator with and without Porous Media[J].Chemical Engineering Journal,2011,168(2):799-802.
    [4] SAKURAI T,YUASA S,HONDA T,et al. Heat Loss Reduction and Hydrocarbon Combustion in Ultra-Micro Combustors for Ultra-micro Gas Turbines[J]. Proceedings of the Combustion Institute,2009,32(2):3067-3073.
    [5]蒋利桥,赵黛青,郭琛绵,等.平面火焰微燃烧器及其温差热电转换系统[J].燃烧科学与技术,2010,16(5):436-441.
    [6] JIANG L Q,ZHAO D Q,GUO C M,et al. Experimental Study of a Plat-flame Micro Combustor Burning DME for Thermoelectric Power Generation[J]. Energy Conversion and Management,2011,52(1):596-602.
    [7] LEI Y,CHEN W,LEI J. Combustion and Direct Energy Conversion inside a Micro-combustor[J]. Applied Thermal Engineering,2016,100:348-355.
    [8] LI J,CHOU S K,LI Z,et al. Development of 1D Model for the Analysis of Heat Transport in Cylindrical Micro Combustors[J].Applied Thermal Engineering,2009,29(8-9):1854-1863.
    [9] YUASA S,OSHIMI K,NOSE H,et al. Concept and Combustion CharacteristicsofUltra-microCombustorswithPremixedFlame[J].ProceedingsoftheCombustionInstitute,2005,30(2):2455-2462.
    [10]刘伟,陈琪.Swiss_roll型微燃烧器的燃烧数值模拟[J].工业加热,2013,42:27-28.
    [11]LI J,ZHONG B. Experimental Investigation on Heat Loss and Combustion in Methane/oxygen Micro-tube Combustor[J].Applied Thermal Engineering,2008,28(7):707-716.
    [12]FANAEE S A,ESFAHANI J A. Two-dimensional Analytical Model of Flame Characteristic in Catalytic Micro-combustors for a Hydrogen-air Mixture[J]. International Journal of Hydrogen Energy,2014,39(9):4600-4610.
    [13]PAN J F,WU D,LIU Y X,et al. Hydrogen/Oxygen Premixed Combustion Characteristics in Micro Porous Media Combustor[J]. Energy Procedia,2014,61:1279-1285.
    [14]LEACH T T,CADOU C P. The Role of Structural Heat Exchange and Heat Loss in the Design of Efficient Silicon Micro-combustors[J]. Proceedings of the Combustion Institute,2005,30(2):2437-2444.
    [15]DI BENEDETTO A,DI SARLI V,RUSSO G. Effect of Geometry on the Thermal Behavior of Catalytic Micro-combustors[J].Catalysis Today,2010,155(1-2):116-122.
    [16]FAN A,WAN J,LIU Y,et al. Effect of Bluff Body Shape on the Blow-Off Limit of Hydrogen/Air Flame in a Planar Microcombustor[J]. Applied Thermal Engineering,2014,62(1):13-19.
    [17]YANG W M,CHOU S K,SHU C,et al. Effect of Wall Thickness of Micro-combustor on the Performance of Micro-thermophotovoltaic Power Generators[J]. Sensors and Actuators A:Physical,2005,119(2):441-445.
    [18]ZUO W,E J,LIN R. Numerical Investigations on an Improved Counterflow Double-channel Micro Combustor Fueled with Hydrogen for Enhancing Thermal Performance[J]. Energy Conversion and Management,2018,159:163-174.
    [19]ANNAMALAI K, PURi I K. Combustion Science and Engineering[M]. Boca Raton:Crc Press,2007.
    [20]FERNANDEZ PELLO A C. Micropower Generation Using Combustion Issues and Approaches[J]. Proceedings of the Combustion Institute,2002,29:883-899.
    [21]JIANGD,YANGW,CHUAKJ.EntropyGENERATIONANALYSIS of H2/air Premixed Flame in Micro-combustors with Heat Recuperation[J]. Chemical Engineering Science,2013,98:265-272.
    [22]ROHSENOW W M,HARTNETT J P,CHO Y I. Handbook of Heat Transfer[M]. New York:McGraw-Hill,1973.
    [23]杨世铭,陶文铨.传热学[M].3版.北京:高等教育出版社,1998.
    [24]YANG W M,CHOU S K,SHU C,et al. Development of a Prototype Micro-thermophotovoltaic Power Generator[J]. Journal of Physics D Applied Physics,2004,37(7):1017.
    [25]BERGMAN T L,LAVINE A S,INCROPERA F P,et al.Fundamentals of Heat and Mass Transfer, 7th Edition Binder Ready Version[M]. Hoboken:Wiley,1985.
    [26]崔克清.安全工程大辞典[M].北京:化学工业出版社,1995.
    [27]STEPHEN R T.燃烧学导论[M].北京:清华大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700