用户名: 密码: 验证码:
热丝化学气相沉积(HFCVD)在铜箔上制备双层石墨烯薄膜的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-quality bilayer graphene synthetized on Cu substrate by HFCVD
  • 作者:崔丹杰 ; 黄哲 ; 吉喆 ; 陈茜 ; 沈彬
  • 英文作者:CUI Danjie;HUANG Zhewei;JI Zhe;CHEN Xi;SHEN Bin;School of Mechanical Engineering, Shanghai Jiaotong University;
  • 关键词:石墨烯涂层 ; 双层 ; 热丝化学气相沉积
  • 英文关键词:graphene film;;bilayer;;HFCVD
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:上海交通大学机械与动力工程学院;
  • 出版日期:2019-05-30
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.428
  • 基金:国家自然科学基金资助项目(51775340,51575340,51375011);; 上海市浦江人才计划资助项目(16PJ025)
  • 语种:中文;
  • 页:GNCL201905024
  • 页数:6
  • CN:05
  • ISSN:50-1099/TH
  • 分类号:152-157
摘要
双层石墨烯独特的物理性能和特性使其在电子领域拥有广阔的应用前景,引起了学者的广泛关注。采用热丝化学气相沉积方法(HFCVD)在1 cm×2 cm的铜箔上制备石墨烯薄膜,并通过探究腔内气压、基体温度、沉积时间、碳源浓度对石墨烯层数和质量的影响,开发出制备低缺陷双层石墨烯的工艺。采用拉曼光谱仪、扫描电子显微镜和原子力显微镜对石墨烯涂层的结构特征、表面形貌和层数进行了表征。实验结果表明,在铜箔上制备出了均匀致密的低缺陷双层石墨烯,厚度为1.5 nm。此外研究结果还表明,降低腔内气压可减少缺陷和层数,增加基体温度可减少层数,沉积时间<4 min或碳源浓度高于1%则无石墨烯生成。因此通过控制腔内气压、基体温度、沉积时间和碳源浓度可实现石墨烯可控生长。
        Because of its unique physical properties, bilayer graphene has broad application prospects in electronics filed, which has attracted wide attention of scholars. Here, hot-filament chemical vapor deposition method(HFCVD) was usedto deposit graphene on 1 cm×2 cm Cu substrate. The effect of pressure, substrate temperature, deposition time and carbon source concentration on the layers and quality was investigated to deposit bilayer graphene with low defect. Moreover, the surface morphology, microstructure and layer number of graphene were examined by Raman, SEM and AFM. The results show that a dense low-defect bilayer graphene was uniformly covered on Cu with a thickness of 1.5 nm. In addition, decreasing the pressure would reduce defect and layer number, while increasing the substrate temperature would reduce the layer number, and no graphene formed when deposition time was less than 4 min or carbon source concentration was more than 1%. So the growth of graphene could be implemented controllably by controlling gas pressure, substrate temperature, deposition time and carbon source concentration.
引文
[1] Cresti A,Roche S.Range and correlation effects in edge disordered graphene nanoribbons [J].New Journal of Physics,2009,63(9):095004.
    [2] Hu Y H,Wang H,Hu B.Thinnest two-dimensional nanomaterial-graphene for solar energy [J].Chemsuschem,2010,3(7):782-796.
    [3] Geim A K,Novoselov K S.The rise of graphene [J].Nature Materials,2007,6(3):183-91.
    [4] Zhu Y,Murali S,Cai W,et al.Graphene and graphene oxide:synthesis,properties and applications [J].Advanced Materials,2010,22(45):3906-3924.
    [5] Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene [J].Nano Letters,2008,8(3):902-903.
    [6] Ta H Q,Perello D J,Duong D L,et al.Stranski-krastanov and volmer–weber CVD growth regimes to control the stacking order in bilayer graphene [J].Nano Letters,2016,16(10):6403-6410.
    [7] Stoller M D,Park S,Zhu Y,et al.Graphene-based ultracapacitors [J].Nano Letters,2008,8(10):3498-3502.
    [8] Sutter P W,Flege J I,Sutter E A.Epitaxial graphene on ruthenium [J].Nature Materials,2008,7(4):406-408.
    [9] Li X,Wang X,Zhang L,et al.Chemically derived,ultrasmooth graphene nanoribbon semiconductors [J].Science,2008,319(5867):1229-1232.
    [10] Reina A,Jia X,Ho J,et al.Large area,few-layer graphene films on arbitrary substrates by chemical vapor deposition [J].Nano Letters,2009,9(1):30-32.
    [11] 陈永胜,黄毅.石墨烯:新型二维碳纳米材料 [M].北京:科学出版社,2015:28-29.
    [12] 刘璐.石墨烯薄膜的RF-PECVD法制备及其特性研究 [D].郑州:郑州大学,2017.
    [13] Wang J,Zhu M,Outlaw R A,et al.Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition [J].Carbon,2004,42(14):2867-72.
    [14] Wang J J,Zhu M Y,Outlaw R A,et al.Free-standing subnanometer graphite sheets [J].Applied Physics Letters,2004,85(7):1265-1267.
    [15] Zhu M,Wang J,Holloway B C,et al.A mechanism for carbon nanosheet formation [J].Carbon,2007,45(11):2229-2234.
    [16] Kataria S,Patsha A,Dhara S,et al.Raman imaging on high-quality graphene grown by hot-filament chemical vapor deposition [J].Journal of Raman Spectroscopy,2012,43(12):1864-1867.
    [17] You Jiayi,Shen Honglie,Li Jinze.Low-temperature synthesis of graphene on copper foil by hot-filamentchemical vapor deposition[J].Chinese Journal of Electron Devices,2014(6):1017-1020.尤佳毅,沈鸿烈,李金泽.铜衬底上热丝CVD法低温生长石墨烯薄膜的研究 [J].电子器件,2014(6):1017-1020.
    [18] Selvakumar N,Vadivel B,Rao D V S,et al.Controlled growth of high-quality graphene using hot-filament chemical vapor deposition [J].Applied Physics A,2016,122(11):943-945.
    [19] Mendoza F,Limbu T B,Weiner B R,et al.Large-area bilayer graphene synthesis in the hot filament chemical vapor deposition reactor [J].Diamond and Related Materials,2015,51(Supplement C):34-38.
    [20] Liu Jin,Lyv Yuanyuan,Zhang Zhiyong,et al.Rapid synthesis of graphene film with 1-2 layers on Ni substrate by LPHFCVD[J].Journal of Northwest University(Natural Science Edition),2017,47(2):227-230(in Chinese).刘进,吕媛媛,张志勇,等.低压热丝化学气相沉积法快速合成1~2层石墨烯薄膜 [J].西北大学学报(自然科学版),2017,47(2):227-230.
    [21] Chen C,Zhang Z,Xu M,et al.Ingenious design of Cu/Ni substrate for hot filament chemical vapor deposition growth of high quality graphene films [J].Diamond and Related Materials,2017,72:7-12.
    [22] Wang T,Xin H W,Zhang Z M,et al.The fabrication of nanocrystalline diamond films using hot filament CVD [J].Diamond & Related Materials,2004,13(1):6-13.
    [23] Campos-Delgado J,Kim Y,Hayashi T,et al.Thermal stability studies of CVD-grown graphene nanoribbons:defect annealing and loop formation [J].Chemical Physics Letters,2009,469(1-3):177-182.
    [24] Malard L M,Pimenta M A,Dresselhaus G,et al.Raman spectroscopy in graphene [J].Physics Reports,2009,473(5):51-87.
    [25] Novoselov K S,Jiang D,Schedin F,et al.Two-dimensional atomic crystals [J].Physics Today,2005,102 (30):10451-10453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700