用户名: 密码: 验证码:
Enterococcus faecium AS8及其胞外多糖对发酵乳流变学特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rheological Properties of Fermented Milk as Affected by Addition of Enterococcus faecium AS8 and Its Exopolysaccharides
  • 作者:白英 ; 刘乃齐
  • 英文作者:BAI Ying;LIU Naiqi;College of Food Science and Engineering, Inner Mongolia Agricultural University;
  • 关键词:胞外多糖 ; 屎肠球菌 ; 结构组成 ; 流变学特性
  • 英文关键词:exopolysaccharide;;Enterococcus faecium;;structural composition;;rheological properties
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:内蒙古农业大学食品科学与工程学院;
  • 出版日期:2019-05-25
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.599
  • 基金:国家自然科学基金地区科学基金项目(31760460)
  • 语种:中文;
  • 页:SPKX201910011
  • 页数:7
  • CN:10
  • ISSN:11-2206/TS
  • 分类号:78-84
摘要
通过红外光谱、气相色谱-质谱联用和流变仪的检测,探究产自屎肠球菌(Enterococcus faecium)AS8的胞外多糖(exopolysaccharide,EPS)(AS8-EPS)的结构组成和流变性能。采用3种发酵乳作为样品,分别为Streptococcus thermophilus+Lactobacillus bulgaricus、EPS+S. thermophilus+L. bulgaricus和E. faecium AS8。结果表明,在贮藏期间,不同发酵乳样品具有不同的流变学性质。同时,补充添加EPS和原位EPS对发酵乳流变性能具有不同的影响。通过Sephadex G-100和Sephadex G-50的分离纯化,获得2种多糖,分别为AS8-1-EPS和AS8-2-EPS。AS8-1-EPS主要单糖组成为甘露糖、葡萄糖和半乳糖(分别占59.1%、26.8%、7.9%),还有含量很少的其他单糖;AS8-2-EPS主要单糖组成为甘露糖、葡萄糖、半乳糖和鼠李糖(分别占65.4%、21.3%、8.9%、4.4%)。红外光谱检测结果表明AS8-1-EPS和AS8-2-EPS均为杂多糖。
        This study aimed to investigate the structural composition of exopolysaccharides(EPS) from Enterococcus faecium AS8 and the rheological properties of traditional fermented dairy products in Inner Mongolia containing respectively Streptococcus thermophiles + Lactobacillus bulgaricus, EPS + S. thermophiles + L. bulgaricus and E. faecium AS8. Two fractions of EPS, named as AS8-1-EPS and AS8-2-EPS, were obtained by Sephadex G-100 column chromatography and purified by Sephadex G-50 column chromatography. AS8-1 was mainly composed of mannose(59.1%), glucose(26.8%)and galactose(7.9%). AS8-2-EPS was mainly composed of mannose(65.4%), glucose(21.3%), galactose(8.9%) and rhamnose(4.4%). The results of Fourier transform infrared(FT-IR) spectroscopy revealed that both EPS fractions were heteropolysaccharides.
引文
[1]DINC M,PECIKOZA U,DJOKIC J,et al.Exopolysaccharide produced by probiotic strain Lactobacillus paraplantarum BGCG11 reduces inflammatory hyperalgesia in rats[J].Frontiers in Pharmacology,2018,9:1-12.DOI:10.3389/fphar.
    [2]PIENIZ S,ANDREAZZA R,ANGHINONI T,et al.Probiotic potential,antimicrobial and antioxidant activities of Enterococcus durans,strain LAB18s[J].Food Control,2014,37(1):251-256.DOI:10.1016/j.foodcont.2013.09.055.
    [3]BHAT B,BAJAJ B K.Hypocholesterolemic and bioactive potential of exopolysaccharide from a probiotic Enterococcus faecium K1isolated from kalarei[J].Bioresource Technology,2018,254:264-267.DOI:10.1016/j.biortech.
    [4]KANMANI P,SUGANYA K,KUMAR R S,et al.Synthesis and functional characterization of antibiofilm exopolysaccharide produced by Enterococcus faecium MC13 isolated from the gut of fish[J].Applied Biochemistry&Biotechnology,2013,169(3):1001-1015.DOI:10.1007/s12010-012-0074-1.
    [5] DERYA O D, GULGUN D, YAVUZ B. The impact of exopolysaccharide production on hydrophobicity and aggregation properties of Enterococcus faecium strains isolated from different regions of Iran and Turkey[J]. Journal of Microbiology and Biotechnology, 2017, 9(6): 131. DOI:10.4172/1948-5948-C1-035.
    [6]刘春晓,李佳宇,刘乃齐,等.内蒙古锡林郭勒盟地区传统奶油制品中产共轭亚油酸乳酸菌的分离筛选与鉴定[J].食品科学,2016,37(9):186-191.DOI:10.7506/spkx1002-6630-201609035.
    [7] KHANAL S N, JOHN A L. Effect of fermentation temperature on the properties of exopolysaccharides and the acid gelation behavior for milk fermented by Streptococcus thermophilus strains DGCC7785 and St-143[J]. Journal of Dairy Science, 2018, 101(5): 3799-3811. DOI:10.3168/jds.2017-13203.
    [8] LI W, JI J, CHEN X, et al. Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1[J]. Carbohydrate Polymers, 2014, 102(1): 351-359. DOI:10.1016/j.carbpol.2013.11.053.
    [9] DEL R B, SGORBATI B, MIGLIOLI M, et al. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum[J]. Letters in Applied Microbiology, 2000, 31(6): 438-442. DOI:10.1046/j.1365-2672.2000.00845.x.
    [10] PRASANNA P H P, GRANDISON A S, CHARALAMPOPOULOS D. Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifidobacterium, strains[J]. Food Research International, 2013, 51(1): 15-22.DOI:10.1016/j.foodres.2012.11.016.
    [11] CRUZ A G, CASTRO W F, FARIA J A F, et al. Stability of probiotic yogurt added with glucose oxidase in plastic materials with different permeability oxygen rates during the refrigerated storage[J]. Food Research International, 2013, 51(2): 723-728. DOI:10.1016/j.foodres.2013.01.028.
    [12] PUROHIT D H, HASSAN A N, BHATIA E, et al. Rheological, sensorial, and chemopreventive properties of milk fermented with exopolysaccharide-producing lactic cultures[J]. Journal of Dairy Science, 2009, 92(3): 847-856. DOI:10.3168/jds.
    [13] KRISTO E, MIAO Z, CORREDIG M. The role of exopolysaccharide produced by Lactococcus lactis subsp.cremoris in structure formation and recovery of acid milk gels[J]. International Dairy Journal, 2011, 21(9):656-662.DOI:10.1016/j.idairyj.2011.02.002.
    [14] GENTèS M C, ST-GELAIS D, TURGEON S L. Gel formation and rheological properties of fermented milk with in situ exopolysaccharide production by lactic acid bacteria[J]. Dairy Science & Technology, 2011,91(5):645-661.DOI:10.1007/s13594-011-0039-0.
    [15] KHANAL S N, LUCEY J A. Evaluation of the yield, molar mass of exopolysaccharides, and rheological properties of gels formed during fermentation of milk by Streptococcus thermophilus strains St-143 and ST-10255y[J]. Journal of Dairy Science, 2017, 100(9): 6906-6917. DOI:10.3168/jds.
    [16] FONSECA J, O’SULLIVAN C, NAGIRA T, et al. In situ study of granular micromechanics in semi-solid carbon steels[J]. Acta Materialia, 2013, 61(11): 4169-4179. DOI:10.1016/j.actamat.2013.03.043.
    [17] XU Z Y, GUO Q B, ZHANG H, et al. Exopolysaccharide produced by Streptococcus thermophiles S-3: molecular, partial structural and rheological properties[J]. Carbohydrate Polymers, 2018, 194(15): 132-138.DOI:10.1016/j.carbpol.2018.04.014.
    [18] SAKINYILMAZER M, DIRIM S N, PINTO D D, et al. Yoghurt with candied chestnut: freeze drying, physical, and rheological behaviour[J]. Journal of Food Science Technology, 2014, 51(12): 3949-3955. DOI:10.1007/s13197-012-0890-x.
    [19] SAKIN-YILMAZER M, KOC B, BALKIR P, et al. Rheological behavior of reconstituted yoghurt powder: an optimization study[J]. Powder Technology, 2014, 266: 433-439. DOI:10.1016/j.powtec.2014.06.060.
    [20] LIU L, LI C, LIU J. Rheological and physical characteristics of non-fat set yogurt prepared with EPS-producing Streptococcus thermophilus and an H+-ATPase-defective mutant Lactobacillus delbrueckii subsp. bulgaricus[J]. International Journal of Food Properties, 2016, 20(4): 745-753.DOI:10.1080/10942912.2016.1180531.
    [21] HASSAN A N, IPSEN R, JANZEN T, et al. Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides[J]. Journal of Dairy Science, 2003, 86(5): 1632-1638.DOI:10.3168/jds.S0022-0302(03)73748-5.
    [22] DOLEYRES Y, SCHAUB L, LACROIX C. Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties[J]. Journal of Dairy Science, 2005, 88(12):4146-4156.DOI:10.3168/jds.S0022-0302(05)73100-3.
    [23]李全阳,夏文水,祝丽香,等.一种乳酸菌多糖对酸乳凝胶的影响机理[J].高等学校化学学报,2007,28(5):868-871.DOI:10.3321/j.issn:0251-0790.2007.05.011.
    [24] BAJAJ B K, RAZDAN K, CLAES I, et al. Physico-chemical characterization of exopolysaccharides of potential probiotic Enterococcus faecium isolates from infants gut[J]. Current Biochemical Engineering, 2015, 2(1): 90-100. DOI:10.2174/2212711901666140813195303.
    [25] KANMANI P, SUGANYA K, KUMAR R S, et al. Synthesis and functional characterization of antibiofilm exopolysaccharide produced by Enterococcus faecium MC13 isolated from the gut of fish[J]. Applied Biochemistry & Biotechnology, 2013, 169(3): 1001-1015. DOI:10.1007/s12010-012-0074-1.
    [26] SINGTHONG J, NINGSANOND S, CUI S W. Extraction and physicochemical characterisation of polysaccharide gum from Yanang (Tiliacora triandra) leaves[J]. Food Chemistry, 2009, 114(4): 1301-1307.DOI:10.1016/j.foodchem.2008.11.008.
    [27] KANMANI P, SATISH K R, YUVARAJ N, et al. Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro[J]. Bioresource Technology, 2011, 102(7): 4827-4833. DOI:10.1016/j.biortech.2010.12.118.
    [28] LIN L, XIE J, LIU S, et al. Polysaccharide from Mesona chinensis:extraction optimization, physicochemical characterizations and antioxidant activities[J]. International Journal of Biological Macromolecules, 2017, 99(3): 665-673. DOI:10.1016/j.ijbiomac.2017.03.040.
    [29] KUIJPERS B, REVESZ P. Electrospun biodegradable calcium containing poly(ester-urethane) urea: synthesis, fabrication, in vitro,degradation, and biocompatibility evaluation[J]. Journal of Biomedical Materials Research Part A, 2013, 101(7): 1876-1887. DOI:10.1002/jbm.a.34490.
    [30] FEMANDO I P S, SANJEEWA K K A, SAMARAKOON K W, et al. FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae[J]. Algae, 2017, 32(1): 75-86.DOI:10.4490/algaE.2017.32.12.1.
    [31] SHUHONG Y, MEIPING Z, HONG Y, et al. Biosorption of Cu (2+), Pb (2+) and Cr (6+) by a novel exopolysaccharide from arthrobacter ps-5[J]. Carbohydrate Polymers, 2014, 101(1): 50. DOI:10.1016/j.carbpol.2013.09.021.
    [32] LUO Q L, TANG Z H, ZHANG X F, et al. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale[J]. International Journal of Biological Macromolecules, 2016, 89: 219. DOI:10.1016/j.ijbiomac.
    [33]SATHIYANARAYANAN G,VIGNESH V,SAIBABA G,et al.Synthesis of carbohydrate polymer encrusted gold nanoparticles using bacterial exopolysaccharide:a novel and greener approach[J].RSCAdvances,2014,4(43):22817-22827.DOI:10.1039/C4RA01428F.
    [34]张惟杰.复合多糖生化研究技术[M]. 上海:上海科学技术出版社,1987.
    [35] ZHOU K, ZENG Y, YANG M, et al. Production, purification and structural study of an exopolysaccharide from Lactobacillus plantarum BC-25[J]. Carbohydrate Polymers, 2016, 144: 205. DOI:10.1016/j.carbpol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700