用户名: 密码: 验证码:
水力压裂基础研究进展及发展建议
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Basic research progress and development suggestions on hydraulic fracturing
  • 作者:仝少凯 ; 高德利
  • 英文作者:TONG Shaokai;GAO Deli;Key Laboratory of Petroleum Engineering Education Ministry, China University of Petroleum (Beijing);State Key Laboratory of Petroleum Resources and Engineering;
  • 关键词:水力压裂 ; 循环注入 ; 波动注入 ; 裂缝扩展 ; 页岩气 ; 地热 ; 研究进展
  • 英文关键词:hydraulic fracturing;;cyclic water injection;;fluctuating water injection;;fracture propagation;;Shale;;geotherm;;research progress
  • 中文刊名:SYZC
  • 英文刊名:Oil Drilling & Production Technology
  • 机构:中国石油大学(北京)石油工程教育部重点实验室;油气资源与工程国家重点实验室;
  • 出版日期:2018-11-22 10:28
  • 出版单位:石油钻采工艺
  • 年:2019
  • 期:v.41;No.241
  • 基金:国家自然科学基金创新研究群体项目“复杂油气井钻井与完井基础研究”(编号:51521063);国家自然科学基金重点项目“页岩和致密油气田高效开发建井基础研究”(编号:U1762214);; 国家科技重大专项子课题“高温高压钻完井管柱失效机理及安全控制技术”(编号:2017ZX05005-005-007)
  • 语种:中文;
  • 页:SYZC201901017
  • 页数:15
  • CN:01
  • ISSN:13-1072/TE
  • 分类号:106-120
摘要
中国低渗透、页岩、致密等难开采油气资源比较丰富,高效开发这类油气资源已成为保障国内油气供给的重要举措之一。水力压裂在难开采油气储层改造中得到了广泛应用,取得了显著的增储增产效果。为了更好地研究和发展水力压裂技术,介绍了国内外近年来水力压裂新工艺和水力裂缝起裂与扩展理论研究、数值模拟、物理模拟等基础研究成果,指出目前研究中存在的不足,分析认为工程与地质的匹配性、稳定与非稳态注入方式的选择性、水力压裂物理模拟与现场原型的相似性,是有效实施水力压裂新工艺的关键所在,并对未来循环注入和波动注入水力压裂研究方向提出了重点研究内容建议,包括非稳态注入流体形成机制研究、井筒压力波动行为研究、储层岩石起裂与扩展机理研究、压裂物理模拟试验与先导性试验、井下管柱动力学及控制技术研究等,以期尽快形成适合中国低渗透、页岩、致密等储层岩性的非稳态水力压裂工艺基础理论及配套技术,并制定非稳态水力压裂设计准则与施工规范。
        There are abundant oil and gas resources of high recovery difficulty in China, e.g. low-permeability, shale and tight oil and gas, and the efficient development of this type of oil and gas resources is now one of the important measures to guarantee domestic oil and gas supply. Hydraulic fracturing is widely applied to the reservoir stimulation of oil and gas resources of high recovery difficulty and presents remarkable effect of reserve increase and production improvement. In order to research and develop hydraulic fracturing technology better, domestic and foreign new hydraulic fracturing technologies and basic research results(e.g. theoretical study, numerical simulation and physical simulation of hydraulic fracture initiation and propagation) in recent years were reviewed,and the shortages of the current researches were pointed out. It is indicated that the match between engineering and geology, the selection of steady and non-steady injection modes, and the similarity between the physical simulation of hydraulic fracturing and its field prototype are the key factors controlling the effectiveness of new hydraulic fracturing technology. Then, the key research contents on hydraulic fracturing of cyclic water injection and fluctuating water injection were proposed, including the formation mechanism of non-steady fluid injection, wellbore pressure fluctuation behavior, fracture initiation and propagation mechanism of reservoir rock,physical simulation experiment and pilot test of fracturing, and downhole string mechanics and control technology, so as to develop the basic theories and supporting technologies of non-steady hydraulic fracturing technologies suitable for low-permeability, shale and tight reservoirs in China as soon as possible and prepare the design criterion and construction norm of non-steady hydraulic fracturing.
引文
[1]蒋廷学.复杂难动用油气藏压裂技术及案例分析[M].北京:中国石化出版社,2017.JIANG Tingxue.Fracturing technology and case analysis of complex and difficult oil and gas reservoirs[M].Beijing:Sinopec Press,2017.
    [2]张绍槐.多分支井钻井完井技术新进展[J].石油钻采工艺,2001,23(2):1-3.ZHANG Shaohuai.New development on multi-lateral drilling and completion technologies[J].Oil Drilling&Production Technology,2001,23(2):1-3.
    [3]蒋祖军.国内第一口TAML五级双分支井完井技术[J].石油钻采工艺,2004,26(1):5-9.JIANG Zujun.Completion technology of the first TAML5 double lateral well at home[J].Oil Drilling&Production Technology,2004,26(1):5-9.
    [4]BURST D G,MARIO V.Unconventional shale play selective fracturing using multilateral technology[R].SPE 151989,2012.
    [5]BURST D G.Optimizing shale development:another approach by means of multilateral wellbores[R].SPE185104,2017.
    [6]高德利,鲜保安.煤层气多分支井身结构设计模型研究[J].石油学报,2007,28(6):113-117.GAO Deli,XIAN Baoan.Research on design models of multi-lateral well structure for coal-bed methane[J].Acta Petrolei Sinica,2007,28(6):113-117.
    [7]李勇,岳砚华,杨佐英,等.长庆低渗透油气田分支井钻完井技术综述[J].钻采工艺,2014,37(4):12-14.LI Yong,YUE Yanhua,YANG Zuoying,et al.Drilling and completion technologies of lateral well in Changqing low permeability oil and gas field[J].Drilling&Production Technology,2014,37(4):12-14.
    [8]BROWN K M,BEATTIE K,KOHUT C.High-angle gyrowhile-drilling technology delivers an economical solution to accurate wellbore placement and collision avoidance in high-density multilateral pad drilling in the Canadian oil sands[R].SPE 151431,2012.
    [9]叶海超,光新军,王敏生,等.北美页岩油气低成本钻完井技术及建议[J].石油钻采工艺,2017,39(5):552-558.YE Haichao,GUANG Xinjun,WANG Minsheng,et al.Low-cost shale oil and gas drilling and completion technologies used in the North America and the suggestions[J].Oil Drilling&Production Technology,2017,39(5):552-558.
    [10]李彬,付建红,秦富兵,等.威远区块页岩气“井工厂”钻井技术[J].石油钻探技术,2017,45(5):13-18.LI Bin,FU Jianhong,QIN Fubing,et al.Well pad drilling technology in the Weiyuan shale gas block[J].Petroleum Drilling Techniques,2017,45(5):13-18.
    [11]张金成,艾军,臧艳彬,等.涪陵页岩气田“井工厂”技术[J].石油钻探技术,2016,44(3):9-15.ZHANG Jincheng,AI Jun,ZANG Yanbin,Y,et al.Multi-well pad technology in the Fuling shale gas field[J].Petroleum Drilling Techniques,2016,44(3):9-15.
    [12]王林,马金良,苏凤瑞,等.北美页岩气工厂化压裂技术[J].钻采工艺,2012,35(6):48-50.WANG Lin,MA Jinliang,SU Fengrui,et al.Shale gas factory fracturing technology in North America[J].Drilling&Production Technology,2012,35(6):48-50.
    [13]ZHANG J C,HOU J R.Theoretical conductivity analysis of surface modification agent treated proppant II-Channel fracturing application[J].Fuel,2018,165:28-32.
    [14]钟森,任山,黄禹忠,等.高速通道压裂技术在国外的研究与应用[J].中外能源,2012,17(6):39-42.ZHONG Sen,REN Shan,HUANG Yuzhong,et al.Research on application of channel fracturing technique in foreign oil and gas field[J].Sino-Global Energy,2012,17(6):39-42.
    [15]GILLARD M,MEDVEDEV O,MEDVEDEV A,et al.A new approach to generating fracture conductivity[R].SPE 135034,2010.
    [16]NGUYEN P D,DEWPRASHAD B T,WEAVER J D.New approach for enhancing fracture conductivity[J].SPE 63010-PA,2010,15(2):83-89.
    [17]SADYKOV A,YUDIN A,OPARIN M,et al.Channel fracturing in the remote Taylakovskoe oil field:reliable stimulation treatments for significant production increase[R].SPE 160767,2012.
    [18]RHEIN T,LOAYZA M,KIRKHAM B,et al.Channel fracturing in horizontal wellbores:the new edge of stimulation techniques in the eagle ford formation[R].SPE 145403,2011.
    [19]杨衍东,刘林,黄禹忠,等.国外分流暂堵宽带压裂新技术及其先导试验[J].中外能源,2015,20(10):65-71.YANG Yandong,LIU Lin,HUANG Yuzhong,et al.New foreign broadband sequence technology for diversion and temporary plugging and its pilot test[J].Sino-Global Energy,2015,20(10):65-71.
    [20]WUTHERICH K D,WALKER K J.Designing completions in horizontal shale gas wells:perforation strategies[R].SPE 155485,2012.
    [21]WUTHERICH K D,SRINIVASAN S,RAMSEY L,et al.Engineered diversion:using well heterogeneity as an advantage to designing stage specific diverter strategies[R].SPE 189827,2018.
    [22]KRAEMER C,LECERF B,TORRES J,et al.A novel completion method for sequenced fracturing in the Eagle Ford shale[R].SPE 169010,2014.
    [23]苏良银,庞鹏,白晓虎,等.低渗透油田水平井重复压裂技术研究与应用[J].新疆石油科技,2015,25(4):34-36.SU Liangying,PANG Peng,BAI Xiaohu,et al.Research on application of repeated fracturing for horizontal wells in low permeability oilfield[J].Xinjiang Pertroleum Science and Technology,2015,25(4):34-36.
    [24]LANTZ T,GREENE D,EBERHARD M.Refracture treatments proving successful in horizontal Bakken wells[R].SPE 108117,2007.
    [25]ORUGANTI Y D,MITTAL R,MCBURNEY C J,et al.Re-fracturing in Eagle Ford and Bakken to increase reserves and generate incremental NPV-field study[R].SPE 173340,2015.
    [26]颜磊,刘立宏,李永明,等.水平井重复压裂技术在美国巴肯油田的成功应用[J].国外油田工程,2010,26(12):21-25.YAN Lei,LIU Lihong,LI Yongming,et al.Successful application of refracture treatments in horizontal Bakken wells[J].Foreign Oil Gield Engineering,2010,26(12):21-25.
    [27]仝少凯,高德利.水力压力波动注入压裂增产工艺的力学原理[J].石油钻采工艺,2018,40(2):265-274.TONG Shaokai,GAO Deli.Mechanical principles of hydraulic pressure fluctuation injection based on fracturing technology[J].Oil Drilling&Production Technology,2018,40(2):265-274.
    [28]赵金洲,任岚,沈骋,等.页岩气储层缝网压裂理论与技术研究新进展[J].天然气工业,2018,38(3):1-14.ZHAO Jinzhou,REN Lan,SHEN Cheng,et al.Latest research progress in network fracturing theories and technologies for shale gas reservoirs[J].Natural Gas Industry,2018,38(3):1-14.
    [29]李小刚,苏洲,杨兆中,等.页岩气储层体积缝网压裂技术新进展[J].石油天然气学报,2014,36(7):154-158.LI Xiaogang,SU Zhou,YANG Zhaozhong,et al.New progress of volumetric network fracturing technologies for shale gas reservoirs[J].Journal of Oil and Gas Technology,2014,36(7):154-158.
    [30]翁定为,雷群,胥云,等.缝网压裂技术及其现场应用[J].石油学报,2011,32(2):280-284.WENG Dingwei,LEI Qun,XU Yun,et al.Network fracturing techniques and its application in the field[J].Acta Petrolei Sinica,2011,32(2):280-284.
    [31]EATON B A.Fracture gradient prediction and its application in oilfield operations[J].JPT,1969,21(10):1353-1360.
    [32]ANDERSON R A,INGRAM D S,ZANIER A M.Determining fracture gradients from well logs[J].JPT,1973,25(11):1259-1268.
    [33]HOEK E,BROWN E T.Empirical strength criterion for rock masses[J].Journal Geotechnical and Geoenvironmental Engineering,ASCE,1982,106(GT9):1013-1035.
    [34]SOLIMAN M Y.Interpretation of pressure behavior of fractured,deviated,and horizontal wells[R].SPE21062,1990.
    [35]HOSSAIN M M,RAHMAN M K,RAHMAN S R.Acomprehensive monograph for hydraulic fracturing initiation from deviated wellbores under arbitrary stress regimes[R].SPE 54360,1999.
    [36]HUBBERT M K,WILLS D G.Mechanics of hydraulic fracturing[R].SPE 686-G I,1957.
    [37]EI-RABAA W.Hydraulic fracture propagation in the presence of stress variation[R].SPE 16898,1987.
    [38]DRAOU A,OSISANYA S O.New methods for estimating of formation pressure and fracture gradients from well logs[R].SPE 63263,2000.
    [39]LI S L,PURDY C,WU S G.Pore pressure and fracture gradient prediction in shale gas formations:accounting for complex rock properties and anisotropies[R].SPE155540,2012.
    [40]黄荣樽.水力压裂裂缝的起裂和扩展[J].石油勘探与开发,1981,46(5):62-74.HUANG Rongzun.Initiation and propagation in hydraulic fracture[J].Petroleum Exploration and Development,1981,46(5):62-74.
    [41]金衍,陈勉,张旭东.天然裂缝地层斜井水力裂缝起裂压力模型研究[J].石油学报,2006,27(5):124-126.JIN Yan,CHEN Mian,ZHANG Xudong.hydraulic fracturing initiation pressure models for directional wells in naturally fractured formation[J].Acta Petrolei Sinica,2006,27(5):124-126.
    [42]MURPHY H D,FEHLER M C.Hydraulic fracturing of jointed formations[R].SPE 14088,1986.
    [43]陈治喜,陈勉,黄荣樽,等.层状介质中水力裂缝的垂向扩展[J].石油大学学报(自然科学版),1997,21(4):23-26.CHEN Zhixi,CHEN Mian,HUANG Rongzun,et al.Vertical growth of hydraulic fracture in layered formations[J].Journal of the University of Petroleum,China(Edition of Natural Science),1997,21(4):23-26.
    [44]陈勉.页岩气储层水力裂缝转向扩展机制[J].中国石油大学学报(自然科学版),2013,37(5):88-94.CHEN Mian.Re-orientation and propagation of hydraulic fractures in shale gas reservoir[J].Journal of China University of Petroleum,2013,37(5):88-94.
    [45]赵海峰,陈勉,金衍.水力裂缝在地层界面的扩展行为[J].石油学报,2009,30(3):450-454.ZHAO Haifeng,CHEN Mian,JIN Yan.Extending behavior of hydraulic fracture on formation interface[J].Acta Petrolei Sinica,2009,30(3):450-454.
    [46]BAI M,MCLENNAN J,GUO Q,et al.Cyclic injection modeling of cutting re-injection[C].In:proceeding of ARMA/USRMS 41st U.S.Symposium on Rock Mechanics,Colorado,2006.
    [47]YOON J S,ZANG A,ZIMMERMANN G.Numerical investigation on stress shadowing in fluid injection-induced fracture propagation in naturally fractured geothermal reservoirs[J].Rock Mechanics and Rock Engineering,2015,48(4):1439-1454.
    [48]ZIMMERMANN G,HOFMANN H,BABADAGLI T,et al.Multi-fracturing and cyclic hydraulic stimulation scenarios to develop enhanced geothermal systemsfeasibility and mitigation strategies to reduce seismic risk[C].In:the proceeding of World Geothermal Congress 2015,Melbourne,2015.
    [49]YOON J S,ZANG A,STEPHANSSON O.Numerical investigation on optimized stimulation of intact and naturally fractured deep geothermal reservoirs using hydromechanical coupled discrete particles joints model[J].Geothermics,2014,52:165-184.
    [50]PROFIT M,DUTKO M,BERE A,et al.Effect of interbeds on hydraulic fracture characteristics and formation pressure response[C].In:the proceeding of Unconventional Resources Technology Conference(URTeC),Texas,2018.
    [51]LI S B,ZHANG D X.A fully coupled model for hydraulic fracture growth during multi-well fracturing treatments:enhancing fracture complexity[R].SPE182674,2017.
    [52]SAMNEJAD M,AMINZADEH F,JHA B.Simulation of hydraulic fracturing-induced permeability stimulation using coupled flow and continuum damage mechanics[R].SPE 187250,2017.
    [53]JOHRI M,ZOBACK M D.The evolution of stimulated reservoir volume during hydraulic stimulation of shale gas formation[C].In:the proceeding of the Unconventional Resources Technology Conference,Colorado,2013.
    [54]YEW C H,MA M J,HILL A D.A study of fluid leak off in hydraulic fracture propagation[R].SPE 64786,2000.
    [55]LEE W S,JANTZ E L.A three-dimensional hydraulic propagation theory coupled with two-dimensional proppant transport[R].SPE 19770,1989.
    [56]RENSHAW C,POLLARD D.An experimentally verified criterion for propagation across unbounded fricional interfaces in brittle,linear elastic materials[J].Internation Journal of Rock Mechanics and Mining Sciences&Geomechanics,1995,32(3):237-249.
    [57]王涛,高岳,柳占立,等.基于扩展有限元法的水力压裂大型物模实验的数值模拟[J].清华大学学报(自然科学版),2014,54(10):1304-1309.WANG Tao,GAO Yue,LIU Zhanli,et al.Numerical simulations of hydraulic fracturing in large objects using an extended finite element method[J].Journal of Tsinghua University(Science&Technology),2014,54(10):1304-1309.
    [58]张汝生,王强,张祖国,等.水力压裂裂缝三维扩展ABAQUS数值模拟[J].石油钻采工艺,2012,34(6):69-72.ZHANG Rusheng,WANG Qiang,ZHANG Zuguo,et al.Research of ABAQUS numerical simulation of 3Dfracture propagation in hydraulic fracturing process[J].Oil Drilling&Production Technology,2012,34(6):69-72.
    [59]张平,赵金洲,郭大立,等.水力压裂裂缝三维延伸数值模拟研究[J].石油钻采工艺,1997,19(3):53-59.ZHANG Ping,ZHAO Jinzhou,GUO Dali,et al.Study on numerical simulation for 3-dimensional fracture propagation in hydraulic fracturing[J].Oil Drilling&Production Technology,1997,19(3):53-59.
    [60]连志龙,张劲,吴恒安,等.水力压裂扩展的流固耦合数值模拟研究[J].岩土力学学报,2008,29(11):3021-3025.LIAN Zhilong,ZHANG Jing,WU Heng’an,et al.Asimulation study of hydraulic fracturing propagation with a solid-fluid coupling model[J].Rock and Soil Mechanics,2008,29(11):3021-3025.
    [61]陆沛青,李根生,沈忠厚,等.裂缝充填物对脉动水力压裂应力扰动效果的数值模拟[J].中国石油大学学报(自然科学版),2015,39(4):77-84.LU Peiqing,LI Gensheng,SHEN Zhonghou,et al.Numerical simulation of influence of crack fillers on stress disturbances effect during pulsating hydro-fracturing[J].Journal of China University of Petroleum,2015,39(4):77-84.
    [62]盛茂,李根生.水力压裂过程的扩展有限元数值模拟方法[J].工程力学,2014,31(10):123-128.SHENG Mao,LI Gensheng.Extended finite element modeling of hydraulic fracture propagation[J].Engineering Mechanics,2014,31(10):123-128.
    [63]张然,李根生,朱海燕.水平多裂缝交错扩展及其诱导应力干扰研究[J].西南石油大学学报(自然科学版),2017,39(1):91-99.ZHANG Ran,LI Gensheng,ZHU Haiyan.Dynamic propagation of multiple horizontal fractures and mutual interference between induced stresses[J].Journal of Southwest Petroleum University(Science&Technology Edition),2017,39(1):91-99.
    [64]PATEL S M,SONDERGELD C H,RAI C S.Laboratory studies of hydraulic fracturing by cyclic injection[J].International Journal of Rock Mechanics and Mining Sciences,2017,95:8-15.
    [65]STOECKHERT F,MOLENDA M,BRENNE S,et al.Fracture propagation in sandstone and slate-laboratory experiments,acoustic emissions and fracture mechanics[J].Journal of Rock Mechanics and Geotechnical Engineering,2015,7:237-249.
    [66]FALSER S,MO W J,WENG D W,et al.Reducing breakdown pressure and fracture tortuosity by in-plane perforations and cyclic pressure[C].In:the proceeding of 50th U.S.Rock Mechanics/Geomechanics Symposium,Houston,2016.
    [67]HOFMANN H,ZIMMERMANN G,ZANG A,et al.Comparison of cyclic and constant fluid injection in granitic rock ad different scales[C].In:the proceeding of 52nd U.S.Rock Mechanics/Geomechanics Symposium,Seattle,2018.
    [68]ZHUANG L,KIM K Y,JUNG S G,et al.Laboratory evaluation of induced seismicity reduction and permeability enhancement effects of cyclic hydraulic fracturing[C].In:the proceeding of 51st U.S.Rock Mechanics/Geomechanics Symposium,San Francisco,2017.
    [69]ERARSLAN N,WILLIAMS D J.Mechanism of rock fatigue damage in terms of fracturing modes[J].International Journal of Fatigue,2012,43:76-89.
    [70]ERARSLAN N,WILLIAMS D J.Investigating the effect of cyclic loading on the indirect tensile strength of rocks[J].Rock Mechanics and Rock Engineering,2012,45:327-340.
    [71]SAKHAEE-POUR A,AGRAWAL A.Predicting breakdown pressure and breakdown cycle in cyclic fracturing[J].SPE Production&Operations,2018,33(4):1-9.
    [72]MEDLIN W L,MASSE L.Laboratory investigation of fracture initiation pressure and orientation[J].SPE Journal,1979,19(2):129-144.
    [73]MARABGOS Ch.The effect of fluid loss on fracture initiation during squeeze cementing operations[R].SPE 19384,1989.
    [74]DAVID W Y,RASMUS R.Experimental study on fracture initiation by pressure pulses[R].SPE 63035,2000.
    [75]LHOMME T P,DE-PATER C J,HELFFERICH P H.Experimental study of hydraulic fracture initiation in colton sandstone[R].SPE/ISRM 78187,2002.
    [76]ZANG A,YOON J S,STEPHANSSON O,et al.Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity[J].Geophysical Journal International,2013,195(2):1282-1287.
    [77]BRANAGAN P,COTNER G,GETTMAN G.Evidence of permeability enhancement through cyclic dry gas injection[C].In:the proceeding of SPE/DOE Low Permeability Symposium,Denver,1981:269-273.
    [78]ZHUANG L,KIM K Y,JUNG S G,et al.Laboratory study on cyclic hydraulic fracturing of Pocheon granite in Korea[C].In:the proceeding of 50th U.S.Rock Mechanics/Geomechanics Symposium,Houston,2016.
    [79]ZIMMERMANN G,MOECK I,BLOCHER G,et al.Cyclic waterfrac stimulation to develop an Enhanced Geothermal system(EGS)-conceptual design and experimental results[J].Geothermics,2010,39(1):59-69.
    [80]YOON J S,ZIMMERMANN G,ZANG A.Discrete element modeling of cyclic rate fluid injection at multiple locations in naturally fractured reservoirs[J].International Journal of Rock Mechanics and Mining Sciences,2015,74:15-23.
    [81]ZANG A,STEPHANSSON O,ZIMMERMANN G.Keynote:fatigue hydraulic fracturing[J].Procedia Engineering,2017,191:1126-1134.
    [82]ZOU Y S,ZHANG S C,ZHOU T,et al.Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology[J].Rock Mechanics and Rock Engineering,2016,49:33-45.
    [83]HE J M,LIN C,LI X,et al.Initiation,propagation,closure and morphology of hydraulic fractures in sandstone cores[J].Fuel,2017,208:65-70.
    [84]MAXWELL S C,GOODFELLOW S,YOUNG R P.Acoustic emission geomechanics and seismic energy budgets of laboratory hydraulic fracturing[J].In:the proceeding of Geo Convention,Canada,2017.
    [85]LI N,ZHANG S C,ZOU Y S,et al.Experimental analysis of hydraulic fracture growth and acoustic emission response in a layered formation[J].Rock Mechanics and Rock Engineering,2018,51:1047-1062.
    [86]SAKHAEE-POUR A,AGRAWAL A.Integrating acoustic emission into percolation theory to predict permeability enhancement[J].Journal of Petroleum Science and Engineering,2018,160:152-159.
    [87]DINSKE C,SHAPIRO S,BERLIN F U.Microseismicity induced by hydraulic fracturing:Evaluation and interpretation in terms of the Kaiser effect[C].In:the proceeding of SEG 2007 Annual Meeting,San Antonio,2007:1594-1598.
    [88]DINSKE C,ROTHERT E,SHAPIRO S,et al.Interpertation of Microseismicity induced by hydraulic fracturing[C].In:the proceeding of SEG 2006 Annual Meeting,New Orleans,2006:1625-1629.
    [89]CHITRALA Y,MORENO C,SONDERGELD C,et al.An experimental investigation into hydraulic fracture propagation under different applied stress in tight sands using acoustic emissions[J].Journal of Petroleum Science and Engineering,2013,108:151-161.
    [90]梁天成,刘云志,付海峰,等.多级循环泵注水力压裂模拟实验研究[J].岩土力学,2017,39(S1):355-361.LIANG Tiancheng,LIU YunZhi,FU Haifeng,et al.Experimental study of hydraulic fracturing simulation for multistage circulating pump injection[J].Rock and Soil Mechanics,2017,39(S1):355-361.
    [91]柳占立,王涛,高岳,等.页岩水力压裂的关键力学问题[J].固体力学学报,2016,37(1):34-49.ZHAN Zhanli,WANG Tao,GAO Yue,et al.The key mechanical problems on hydraulic fracture in Shale[J].Chinese Journal of Solid Mechanics,2016,37(1):34-49.
    [92]陈勉,庞飞,金衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000,19(S0):868-872.CHEN Mian,PANG Fei,JIN Yan.Experiments and analysis on hydraulic fracturing by a large-size triaxial simulator[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(S0):868-872.
    [93]贾长贵,李明志,邓金根,等.斜井压裂大型真三轴模拟试验研究[J].西南石油大学学报,2007,29(2):135-137.JIA Changgui,LI Mingzhi,DENG Jingen,et al.Largescale three dimensional simulation test for directional perforation and fracturing in deflected well[J].Journal of Southwest Petroleum University,2007,29(2):135-137.
    [94]张旭,蒋廷学,贾长贵,等.页岩气储层水力压裂物理模拟试验研究[J].石油钻探技术,2013,41(2):70-74.ZHANG Xu,JIANG Tingxue,JIA Changgui,et al.Physical simulation of hydraulic fracturing of shale gas reservoir[J].Petroleum Drilling Techniques,2013,41(2):70-74.
    [95]李芷,贾长贵,杨春和,等.页岩水力压裂水力裂缝与层里面扩展规律研究[J].岩石力学与工程学报,2015,34(1):12-20.LI Zhi,JIA Changgui,YANG Chunhe,et al.Propagation of hydraulic fissures and bedding planes in hydraulic fracturing of shale[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(1):12-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700