用户名: 密码: 验证码:
考虑支撑剂裂缝导流能力计算及缝内支撑剂运移模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Calculation of fracture conductivity considering proppant influence and simulation of proppant transport in fracture
  • 作者:朱维耀 ; 刘青 ; 岳明 ; 张燎原
  • 英文作者:Zhu Weiyao;Liu Qing;Yue Ming;Zhang Liaoyuan;Civil and Resources Engineering School, University of Science and Technology Beijing;Research Institute of Petroleum Engineering, Shengli Oilfield Company;
  • 关键词:导流能力 ; 支撑剂直径 ; 铺砂浓度 ; 数值模拟
  • 英文关键词:fracture conductivity;;proppant diameter;;sand concentration;;numerical analogue
  • 中文刊名:STQG
  • 英文刊名:Chemical Engineering of Oil & Gas
  • 机构:北京科技大学土木与资源工程学院;中国石化胜利油田分公司石油工程技术研究院;
  • 出版日期:2019-04-15
  • 出版单位:石油与天然气化工
  • 年:2019
  • 期:v.48;No.250
  • 基金:国家科技重大专项“致密油垂直井多层压裂裂缝形态与流场调控理论及应用研究”(2016ZX05072-003);; 中央高校基本科研业务“致密油储层定长缝压裂开发渗流规律研究”(FRF-TP-17-027A2)
  • 语种:中文;
  • 页:STQG201902016
  • 页数:4
  • CN:02
  • ISSN:51-1210/TE
  • 分类号:81-84
摘要
裂缝导流能力是影响油气田产能的重要因素。根据支撑剂的最密排列以及Carman-Kozeny公式,结合弹性力学的相关知识,建立了考虑铺砂浓度、闭合压力、支撑剂粒径、支撑剂材料以及支撑剂嵌入的裂缝导流能力计算模型。结果表明:随着铺砂浓度的增加、支撑剂粒径的变大,裂缝的导流能力增大;低闭合压力的情况下支撑剂嵌入壁面对导流能力影响非常小,而在高压下支撑剂嵌入对导流能力影响稍大。该计算模型很好地结合了上述导流能力的影响因素,为油气田压裂生产提供了理论依据。
        The fracture conductivity greatly affects the production capacity of oil gas field. Based on the hexagonal closest packing assumption of proppant, theory of elasticity and Carman-Kozeny formula, a mathematical model of fracture conductivity is established, with taking sand concentration, closure pressure, proppant diameter, proppant material and proppant embedment into account. The result shows that the improved conductivity will achieve with an increased sanding concentration and proppant particle size. The proppant-embedded wall has a very small influence on the conductivity when the pressure is low, and the proppant embedding has a slightly greater influence on the conductivity at high pressure.The calculation model combines the factors affecting the fracture conductivity very well, and provides a theoretical basis for the fracturing development of oil and gas field.
引文
[1] 胡文瑞.中国低渗透油气的现状与未来[J].中国工程科学,2009,11(8):29-37.
    [2] 刘友权,陈鹏飞,吴文刚,等.加砂压裂用滑溜水返排液重复利用技术[J].石油与天然气化工,2013,42(5):492-495.
    [3] 李同锋,郑勇,高瑞民,等.压裂裂缝处理剂的研制及在油井增产中的应用[J].石油与天然气化工,2001,30(5):253-255.
    [4] 辛军,郭建春,赵金洲,等.砂泥岩交互储层支撑剂导流能力实验及应用[J].西南石油大学学报(自然科学版),2010,32(3):80-84.
    [5] 孟雅,李治平,郭珍珍.煤储层压裂裂缝导流能力计算模型及应用[J].煤炭学报,2014,39(9):1852-1856.
    [6] 吴国涛,胥云,杨振周,等.考虑支撑剂及其嵌入程度对支撑裂缝导流能力影响的数值模拟[J].天然气工业,2013,33(5):65-68.
    [7] 肖勇军,郭建春,王文耀,等.不同粒径组合支撑剂导流能力实验研究[J].断块油气田,2009,16(3):102-104.
    [8] COOKE JR C E.Conductivity of fracture proppants in multiple layers[J].Journal of Petroleum Technology,1973,25(9):1101-1107.
    [9] FAN M,HAN Y,MCCLURE J E,et al.Conductivity evolution of fracture proppant in partial monolayers and multilayers[C]//American Geophysical Union (AGU) Fall Meeting.New Orleans:AGU,2017.
    [10] HUITT J L,MCGLOTHLIN JR B B.The propping of fractures in formations susceptible to propping-sand embedment[C]//Drilling and Production Practice.New York:American Petroleum Institute,1958.
    [11] VOLK L J,RAIBLE C J,CARROLL H B,et al.Embedment of high strength proppant into low-permeability reservoir rock[C]//SPE/DOE Low Permeability Gas Reservoirs Symposium.Denver,Colorado:Society of Petroleum Engineers,1981.
    [12] 赵金洲,何弦桀,李勇明.支撑剂嵌入深度计算模型[J].石油天然气学报(江汉石油学院学报),2014,36(12):209-212.
    [13] 吴国涛,胥云,杨振周,等.考虑支撑剂及其嵌入程度对支撑裂缝导流能力影响的数值模拟[J].天然气工业,2013,33(5):65-68.
    [14] 高长龙,艾池,杨明,等.考虑支撑剂破碎的裂缝导流能力计算模型[J].当代化工,2015,44(5):1074-1075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700