用户名: 密码: 验证码:
硼掺杂石墨烯对废水中铬(Ⅵ)的吸附性能及吸附机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adsorption property and mechanism of chromium (Ⅵ) in wastewater by boron-doped graphene
  • 作者:陈锋 ; 马路路 ; 郭世浩 ; 张谋 ; 袁莹锋 ; 马培 ; 刘帅霞
  • 英文作者:CHEN Feng;MA Lu-lu;GUO Shi-hao;ZHANG Mou;YUAN Ying-feng;MA Pei;LIU Shuai-xia;School of Resource and Environment,Henan University of Engineering;
  • 关键词:石墨烯 ; 硼掺杂 ; 六价铬 ; 吸附性能 ; 吸附机理
  • 英文关键词:graphene;;boron doping;;chromium(Ⅵ);;adsorption property;;adsorption mechanism
  • 中文刊名:SXHG
  • 英文刊名:Applied Chemical Industry
  • 机构:河南工程学院资源与环境学院;
  • 出版日期:2019-03-13 08:44
  • 出版单位:应用化工
  • 年:2019
  • 期:v.48;No.327
  • 基金:国家自然科学基金青年基金项目(41401549);; 河南省高等学校重点科研项目(19A610004);; 河南工程学院博士基金项目(D2017011)
  • 语种:中文;
  • 页:SXHG201905004
  • 页数:7
  • CN:05
  • ISSN:61-1370/TQ
  • 分类号:21-26+31
摘要
以硼酸为掺杂剂、氧化石墨烯(G)为前驱体,通过一步水热法制备出硼掺杂石墨烯(B-G),并首次利用静态吸附实验研究其对废水中Cr(Ⅵ)的吸附性能和吸附机理。结果表明,硼掺杂可显著提升G对Cr(Ⅵ)的吸附性能,其中B-G-3对Cr(Ⅵ)的吸附效率超过80%。吸附Cr(Ⅵ)的最佳pH值为2;吸附率随着投加量的增加而增大,吸附量随着Cr(Ⅵ)初始浓度的增大而增大;温度升高有利于吸附进行。当pH=2,吸附剂投加量为20 mg,Cr(Ⅵ)初始浓度为100 mg/L,45℃条件下吸附12 h,B-G-3对Cr(Ⅵ)的吸附量高达119.5 mg/g。SEM、BET、FTIR、XRD和Raman检测表明,B-G-3为具有微介孔结构的纳米片状无定型碳,比表面积和孔体积分别为192.14 m~2/g和0.50 cm~3/g,且表面带有大量的含氧和含硼官能团。吸附的机理主要为微介孔的物理吸附以及表面含氧及含硼官能团的化学吸附。
        Boron-doped graphene(B-G) was synthesized by one pot hydrothermal method using graphene oxide and boric acid as the carbon precursor and dopant,the adsorption property and mechanism of Cr(Ⅵ) in wastewater were then studied by static adsorption experiment for the first time.The results showed that,boron doping can significantly improve the adsorption performance of Cr(Ⅵ) by G,and the Cr(Ⅵ) adsorption rate by B-G-3 was more than 80%.The optimal pH value for Cr(Ⅵ) adsorption is 2.The removal percentage of Cr(Ⅵ) increases with the adsorbent dosage increasing,and the Cr(Ⅵ) adsorption quantity increases with the increasing of Cr(Ⅵ) initial concentration.High temperature favors the adsorption.When pH value is 2,the B-G-3 dosage is 20 mg,the initial concentration of Cr(Ⅵ) is 100 mg/L,and the adsorption time is 12 h,the resulting adsorption quantity can reach 119.5 mg/g at 45 ℃.The SEM,BET,FTIR,XRD and Raman tests showed that B-G-3 was nanosheet-like amorphous carbon,the specific surface area and pore volume were respectively 192.14 m~2/g and 0.50 cm~3/g,and the surface was rich in oxygen-containing and boron-containing functional groups.The adsorption mechanism mainly involves both physisorption by micro-/mesopore and chemisorptions by oxygen-containing and boron-containing functional groups.
引文
[1] 高小青,李润,孙丽娟.ZSM-5分子筛对含铬废水中Cr(Ⅲ)的吸附行为研究[J].环境污染与防治,2017,39(9):962-966.
    [2] 陈盛余,赵丹丹,史兵方,等.荔枝壳对六价铬的吸附特性[J].江苏农业科学,2017,45(11):249-251.
    [3] 徐衍忠,秦绪娜,刘祥红,等.铬污染及其生态效应[J].环境科学与技术,2002,25(s1):8-9.
    [4] 赵馨,陈宏,黄绍洁,等.改性沸石对铬吸附性能的研究[J].环保科技,2017(4):20-23.
    [5] 郭方颖.改性磁性氧化石墨烯材料制备及其对水中六价铬离子的吸附机理研究[D].长沙:湖南大学,2016.
    [6] 韩振.基于石墨烯复合材料修饰电极的制备及其电化学传感应用[D].南京:南京理工大学,2014.
    [7] Yu J G,Yu L Y,Yang H,et al.Graphene nanosheets as novel adsorbents in adsorption,preconcentration and removal of gases,organic compounds and metal ions[J].Science of the Total Environment,2015,502:70-79.
    [8] Li Y,Zhang P,Du Q,et al.Adsorption of fluoride from aqueous solution by graphene[J].Journal of Colloid & Interface Science,2011,363(1):348-354.
    [9] Li Y,Du Q,Liu T,et al.Methylene blue adsorption on graphene oxide/calcium alginate composites[J].Carbohydrate Polymers,2013,95(1):501-507.
    [10] Niu L,Li Z,Wei H,et al.Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors[J].Electrochimica Acta,2013,108(10):666-673.
    [11] Sheng Z H,Gao H L,Bao W J,et al.Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells[J].Journal of Materials Chemistry,2011,22(2):390-395.
    [12] Liu L,Guo X,Tallon R,et al.Highly porous N-doped graphene nanosheets for rapid removal of heavy metals from water by capacitive deionization[J].Chemical Communications,2016,53(5):881-884.
    [13] Wei Y,Xu L,Yang K,et al.Electrosorption of toxic heavy metal ions by mono S- or N-doped and S,N-codoped 3D graphene aerogels[J].Journal of the Electrochemical Society,2017,164(2):E17-E22.
    [14] Al-Othman Z A,Ali R,Naushad M.Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell:Adsorption kinetics,equilibrium and thermodynamic studies[J].Chemical Engineering Journal,2012,184(2):238-247.
    [15] Daneshvar N,Salari D,Aber S.Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake[J].Journal of Hazardous Materials,2002,94(1):49-61.
    [16] Fu R,Zhang X,Xu Z,et al.Fast and highly efficient removal of chromium (VI) using humus-supported nanoscale zero-valent iron:Influencing factors,kinetics and mechanism[J].Separation & Purification Technology,2016,174:362-371.
    [17] 公绪金,李伟光,张妍妍,等.活性炭吸附水中六价铬机理及影响因素[J].山东建筑大学学报,2011,26(4):396-402.
    [18] 刘伟,杨琦,李博,等.磁性石墨烯吸附水中Cr(Ⅵ)研究[J].环境科学,2015(2):537-544.
    [19] Tan I A,Ahmad A L,Hameed B H.Adsorption isotherms,kinetics,thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon[J].Journal of Hazardous Materials,2009,164(2):473-482.
    [20] 曾会会,仪桂云,邢宝林,等.SiO2/还原氧化石墨烯复合材料的简易制备及对罗丹明B的吸附[J].化工进展,2018(3):1084-1091.
    [21] 李鑫,张海洋,朱如志,等.硫掺杂三维石墨烯的制备及其电化学特性研究[J].电子元件与材料,2018(5):57-61.
    [22] 石夏颖.油料作物生物炭的制备、表征及其对Cr(VI)和Cu(Ⅱ)的吸附性能研究[D].兰州:兰州交通大学,2014.
    [23] 李园园.丝瓜络活性炭的制备及其除铬性能研究[D].厦门:集美大学,2012.
    [24] 吴春来,樊静.石墨烯材料在重金属废水吸附净化中的应用[J].化工进展,2013,32(11):2668-2674.
    [25] 王家宏,尹小龙,吉艳芬.聚乙烯亚胺改性氧化石墨对水中Cr(Ⅵ)的吸附[J].无机化学学报,2015,31(6):1185-1193.
    [26] Wu Y,Luo H,Wang H,et al.Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide[J].Journal of Colloid & Interface Science,2013,394(1):183-191.
    [27] 王慧.氧化石墨烯及其功能化改性材料富集水中重金属离子机理研究[D].长沙:湖南大学,2016.
    [28] 张惠宁.氧化石墨烯基复合材料的制备及其对水中重金属离子与染料的吸附性能研究[D].武汉:武汉大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700