用户名: 密码: 验证码:
黄土露天矿区重构土壤体积含水率表征与反演
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Representation and Inversion of Reconstructed Soil Volumetric Water Content in Loess Open Pit Mining Area
  • 作者:罗古拜 ; 曹银贵 ; 白中科 ; 况欣宇 ; 王舒菲 ; 宋蕾
  • 英文作者:LUO Gu-bai;CAO Yin-gui;BAI Zhong-ke;KUANG Xin-yu;WANG Shu-fei;SONG Lei;School of LandScience and Technology,China University of Geosciences;Key Laboratory of LandConsolidation and Rehabilitation,Ministry of Natural Resources;
  • 关键词:土壤体积含水率 ; 土壤重构 ; 土地复垦 ; 探地雷达 ; 介电常数
  • 英文关键词:soil volumetric water content;;soil reconstruction;;land reclamation;;ground penetrating radar;;dielectric constant
  • 中文刊名:NCST
  • 英文刊名:Journal of Ecology and Rural Environment
  • 机构:中国地质大学(北京)土地科学技术学院;自然资源部土地整治重点实验室;
  • 出版日期:2019-04-28 10:31
  • 出版单位:生态与农村环境学报
  • 年:2019
  • 期:v.35;No.172
  • 基金:国家自然科学基金(41701607,41571508);; 中央高校基本科研业务费优秀教师项目(2-9-2017-103)
  • 语种:中文;
  • 页:NCST201904017
  • 页数:9
  • CN:04
  • ISSN:32-1766/X
  • 分类号:123-131
摘要
以中煤平朔安太堡露天矿南排土场为研究对象,采用环刀采样称重法、探地雷达(GPR)探测法、方差分析法、拟合分析法和对比分析法等方法揭示复垦地重构土壤剖面土壤体积含水率的深度差异在GPR信号图中的特征,并建立土壤体积含水率和介电常数的耦合关系模型。研究结果表明:(1)矿区排土场不同位置及同一剖面不同深度处重构土壤剖面体积含水率差异明显。(2)P2剖面在10~20和50~60 cm深度处呈现2个明显的峰值,P5剖面0~20 cm深度内土壤体积含水率较高,标准偏差达4. 84%。(3)通过对比发现Topp模型计算出的土壤体积含水率略高于采样实测出的土壤体积含水率。采样实测和Topp模型计算出的土壤体积含水率差值的绝对值最大为3. 20%,最小为0. 13%,平均偏差率为13. 42%。(4)拟合关系模型反演出的土壤体积含水率略低于采样实测出的土壤体积含水率。2种方式测量出的土壤体积含水率差值的绝对值最大为3. 11%,最小为0. 23%,平均偏差率为9. 83%。因此,GPR可用于分析矿区重构土壤的体积含水率差异。该研究成果不仅可丰富矿区土壤重构的基本原理,也为采用GPR技术进行无损探测土壤体积含水率提供了有力支撑。
        The south dumping site of the Pingshuo Antaibao Open-Pit Coal Mine of China Coal Energy was taken as a research object,aiming to reveal the characteristics of the depth difference of the soil volumetric water content in the reconstructed soil profile of the reclaimed land in the ground penetrating radar(GPR)signal map,and a fitting model of Soil volumetric water content and dielectric constant was established. The volumetric water content of the reconstructed soil profile at different locations of the dump site in the mining area was obtained by two methods:ring knife sampling weighing and GPR detection. The test results were analyzed by means of analysis of variance,fitting analysis and comparative analysis. The results show that the volumetric water content of reconstructed soil profiles in different positions of dump and different depths of the same section is obviously different;the P2 profile showed two distinct peaks at 10-20 and 50-60 cm depth. Within 0-20 cm depth of P5 profile,soil volumetric water content was higher,and the standard deviation was 4. 84%. By comparison,the soil volumetric water content calculated by the Topp model was slightly higher than the measured soil volumetric water content. The absolute value of the difference of soil volumetric water content calculated by sampling and Topp model was 3. 20% and the minimum was 0. 13%,and the average deviation rate was 13. 42%. The soil volumetric water content of the model inversion was slightly lower than the measured soil volumetric water content.The absolute value of the difference in soil volumetric water content measured by the two methods was 3. 11%,the minimum was 0. 23%,and the average deviation rate was 9. 83%. GPR can analyze the difference of soil volumetric water content in the reconstructed area of the mining area. In addition,the research results in this paper are helpful to enrich the basic principles of soil reconstruction in mining areas and to provide strong support for GPR non-destructive detection of soil volumetric water content.
引文
[1]白中科,胡振华,王治国.露天矿排土场人为加速侵蚀及分类研究[J].土壤侵蚀与水土保持学报,1998,4(1):34-40.[BAI Zhong-ke,HU Zhen-hua,WANG Zhi-guo. Artificial Accelerated Erosion and Classification of the Dump in Surface Mine[J]. Journal of Soil and Water Conservation,1998,4(1):34-40.]
    [2]胡振琪,陈宝政,王树东,等.应用探地雷达测定复垦土壤的水分含量[J].河北建筑科技学院学报,2005,22(1):1-3.[HU Zhen-qi,CHEN Bao-zheng,WANG Shu-dong,et al. Determination of Water Content in Reclaimed Soil by Using Ground Penetrating Radar[J]. Journal of Hebei Institute of Architectural Science and Technology,2005,22(1):1-3.]
    [3]曹银贵,白中科,张耿杰,等.山西平朔露天矿区复垦农用地表层土壤质量差异对比[J].农业环境科学学报,2013,32(12):2422-2428.[CAO Yin-gui,BAI Zhong-ke,ZHANG Geng-jie,et al. Soil Quality of Surface Reclaimed Farmland in Large Open-Cast Mining Area of Shanxi Province[J]. Journal of Agro-Environment Science,2013,32(12):2422-2428.]
    [4]谷裕,王金满,王洪丹,等.黄土区露天煤矿排土场植被恢复的水肥响应[J].生态学杂志,2016,35(12):3233-3241.[GU Yu,WANG Jin-man,WANG Hong-dan,et al. Response of Soil Water and Soil Fertility to Vegetation Restoration in an Opencast Coal-Mine in a Loess Area[J]. Chinese Journal of Ecology,2016,35(12):3233-3241.]
    [5]苏帅,杨永刚,黄磊.矿区生态修复过程中不同立地类型土壤水动力学特性[J].水土保持通报,2018,38(1):18-23.[SU Shuai,YANG Yong-gang,HUANG Lei. Dynamic Characteristics of Soil Water in Different Sites During Ecological Restoration in Mining Area[J]. Bulletin of Soil and Water Conservation,2018,38(1):18-23.]
    [6]薛燕琴.孝义矿区不同复垦年限复垦土壤理化性状和肥力研究[D].太谷:山西农业大学,2013.
    [7] RUBIN Y. Mapping the Volumetric Soil Water Content of a California Vineyard Using High-Frequency GPR Ground Wave Data[J]. The Leading Edge,2002,21(6):552-559.
    [8]雷少刚,卞正富.探地雷达测定土壤含水率研究综述[J].土壤通报,2008,39(5):1179-1183.[LEI Shao-gang,BIAN Zheng-fu.ReviewonSoilWaterContentMeasurementWithGroundPenetrating Radar[J]. Chinese Journal of Soil Science,2008,39(5):1179-1183.]
    [9]王前锋,周可法,孙莉,等.基于探地雷达快速测定土壤含水量试验研究[J].自然资源学报,2013,28(5):881-888.[WANG Qian-feng,ZHOU Ke-fa,SUN Li,et al. A Study of Fast Estimating Soil Water Content by Ground Penetrating Radar[J]. Journal of Natural Resources,2013,28(5):881-888.]
    [10] RATTO C R,MORTON JR K D,COLLINS L M,et al. Analysis of Linear Prediction for Soil Characterization in GPR Data for Countermine Applications[J]. Sensing and Imaging,2014,15(1):86. DOI:10. 1007/s11220-014-0086-8.
    [11] BENEDETTO A. Water Content Evaluation in Unsaturated Soil Using GPR Signal Analysis in the Frequency Domain[J]. Journal of Applied Geophysics,2010,71(1):26-35.
    [12]张昊,杨进,李胜利,等.基于探地雷达技术的点坝浅部地层分布分析[J].中北大学学报(自然科学版),2016,37(6):638-647.[ZHANG Hao,YANG Jin,LI Sheng-li,et al. Analysis of Shallow Strata Distribution in Point Bar Area Using Ground Penetrating Radar Technology[J]. Journal of North University of China(Natural Science Edition),2016,37(6):638-647.]
    [13]马锐,韩武波,白中科.黄土区大型露天矿排土场水土流失致灾因子的确定:以安太堡露天煤矿南排土场为例[J].能源环境保护,2006,20(2):50-53.[MA Rui,HAN Wu-bo,BAI Zhong-ke. Research of Ravaged Indexes of Water and Soil Loss of Dumping Site of Large Opencast Coal Mine in Loess Area:Example for the South Dumping Site of Antaibao Opencast Coal Mine[J]. Energy Environmental Protection,2006,20(2):50-53.]
    [14]白中科,王治国,赵景逵,等.安太堡露天煤矿水土流失特征与控制[J].煤炭学报,1997,22(5):542-547.[BAI Zhongke,WANG Zhi-guo,ZHAO Jing-kui,et al. Characteristics of Soil Erosion and Its Control in Antaibao Open-Pit Mine[J]. Journal of China Coal Society,1997,22(5):542-547.]
    [15] TOPP G C,DAVIS J L,ANNAN A P. Electromagnetic Determination of Soil Water Content:Measurements in Coaxial Transmission lines[J]. Water Resources Research,1980,16(3):574-582.
    [16] CAO Y G,WANG J M,BAI Z K,et al. Differentiation and Mechanisms on Physical Properties of Reconstructed Soils on Open-Cast Mine Dump of Loess Area[J]. Environmental Earth Sciences,2015,74(8):6367-6380.
    [17]张建军.生态因子及抚育对野生连翘生长和产量的影响[J].山西农业大学学报(自然科学版),2013,33(1):10-15.[ZHANG Jian-jun. The Effects of Ecological Factors and Artificial Tending on the Growth and Yield of Wild Forsythia[J]. Journal of Shanxi Agricultural University(Natural Science Edition),2013,33(1):10-15.]
    [18]李勉,姚文艺,陈江南,等.草被覆盖对坡面流流速影响的人工模拟试验研究[J].农业工程学报,2005,21(12):43-47.[LI Mian,YAO Wen-yi,CHEN Jiang-nan,et al. Artificial Simulation Test on the Influence of Grass Cover on the Flow Velocity of Slope Flow[J]. Transactions of the Chinese Society of Agricultural Engineering,2005,21(12):43-47.]
    [19]周文,雷筱.不同灌水条件下宁夏贺兰山东麓滴灌酿酒葡萄土壤含水率变化规律研究[J].工程建设与设计,2018(8):149-152.[ZHOU Wen,LEI Xiao. Study on the Change of Soil Moisture Content of the Trickle Irrigation Wine Vineland in Donglu of Helan Mountain in Ningxia Under Different Irrigation Conditions[J]. Construction&Design for Project, 2018(8):149-152.]
    [20] BENEDETTO A,BENEDETTO F. Remote Sensing of Soil Moisture Content by GPR Signal Processing in the Frequency Domain[J]. IEEE Sensors Journal,2011,11(10):2432-2441.
    [21] GALAGEDARA L W,PARKIN G W,REDMAN J D,et al. Assessment of Soil Moisture Content Measured by Borehole GPR and TDR Under Transient Irrigation and Drainage[J]. Journal of Environmental and Engineering Geophysics,2003,8(2):77.DOI:10. 4133/JEEG8. 2. 77.
    [22] CLEMENT W P. Issues During the Inversion of Crosshole Radar Data:Can We Have Confidence in the Outcome?[J]. Journal of Environmental and Engineering Geophysics,2006,11(4):269-287.
    [23]王春辉,刘四新,仝传雪.探地雷达测量土壤水含量的进展[J].吉林大学学报(地球科学版),2006,36(增刊1):119-125.[WANG Chun-hui,LIU Si-xin,Tong Chuan-xue. Progress of Ground Penetrating Radar in Measuring Soil Water Content[J]. Journal of Jilin University(Earth Science Edition),2006,36(Suppl. 1):119-125.]
    [24]刘四新,蔡佳琪,傅磊,等.利用探地雷达精确探测铁路路基含水率[J].地球物理学进展,2017,32(2):878-884.[LIU Si-xin,CAI Jia-qi,FU Lei,et al. Accurate Detection of Moisture Content of Subgrade by GPR[J]. Progress in Geophysics,2017,32(2):878-884.]
    [25] TOMER M D,CLOTHIER B E,VOGELER I,et al. A Dielectric-Water Content Relationship for Sandy Volcanic Soils in New Zealand[J]. Science Society of America Journal,1999,63(4):777-781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700