用户名: 密码: 验证码:
云南荞麦地流域地下水水化学特征及物质来源分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chemical Characteristics of Groundwater and Material Sources Analysis in Buckwheat Field, Yunnan Province
  • 作者:张勇 ; 郭纯青 ; 朱彦光 ; 于奭
  • 英文作者:ZHANG Yong;GUO Chun-qing;ZHU Yan-guang;YU Shi;College of Environmental Science and Engineering,Guilin University of Technology;Key Laboratory of Karst Dynamics,Ministry of Land and Resource/Guangxi,Institute of Karst Geology,Chinese Academy of Geological Sciences;
  • 关键词:地下水 ; 水化学特征 ; 影响因素 ; 物质来源 ; 多元统计分析
  • 英文关键词:groundwater;;hydrochemical characteristics;;influencing factors;;material sources;;multivariate statistical analysis
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:桂林理工大学环境科学与工程学院;中国地质科学院岩溶地质研究所/国土资源部广西岩溶动力学重点实验室;
  • 出版日期:2019-01-20 17:30
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划项目(2016YFC0502302);; 地质调查项目(DD20160305);; 国家自然科学基金项目(41402324)
  • 语种:中文;
  • 页:HJKZ201906023
  • 页数:10
  • CN:06
  • ISSN:11-1895/X
  • 分类号:196-205
摘要
为研究荞麦地流域地下水的水化学特征及物质来源,2017年7月在研究区共采集地下水的水样32个,综合运用聚类分析、因子分析和路径模型分析等方法,分析了荞麦地流域地下水水化学特征,并定性和定量探讨了荞麦地流域地下水水化学的物质来源.结果表明,研究区内水体整体呈弱碱性,Ca~(2+)、Mg~(2+)、SO_4~(2-)、HCO_3~-和N_3O~-等主要阴阳离子具有较高的空间变异性.通过聚类分析可知,研究区内地下水可分为两大类:A类和B类,分别具有两个子集:A_1、A_2、B_1和B_2,并且从A类地下水到B类地下水化学类型开始变得复杂,A类地下水水化学类型均为HCO_3-Ca型,B_1类地下水和B_2类地下水分别有HCO_3-Ca型、HCO_3-Na·Ca型、HCO_3-Na·Ca·Mg型和HCO_3-Ca型、HCO_3-Ca·Mg型、HCO_3-Na·Ca型各3类.为进一步探讨地下水水化学的影响因素,通过因子分析和路径模型分析可确定碳酸盐岩、人类活动、蒸发岩和硅酸盐岩是地下水的主要物质来源.其中人类活动的作用和MgSO_4型蒸发岩的溶解,是形成以碳酸盐岩为地下水化学组分的主要来源,同时具有多元地下水水化学特征的重要原因.
        In order to study the hydrochemistry characteristics and material sources of groundwater in the Buckwheat basin,we collected 32 groundwater samples in the study area in July 2017. The chemical characteristics of groundwater were analyzed by cluster analysis,factor analysis,and path model analysis. Meanwhile,we qualitatively and quantitatively assessed the sources of groundwater hydrochemistry in the Buckwheat basin. The results showed that the groundwater in the study area was weakly alkaline,and the major ions such as Ca~(2+),Mg~(2+),SO_4~(2-),HCO_3~-,and NO_3~- had high spatial variability. According to the clustering analysis,the groundwater in the study area can be divided into two categories,namely,class A and class B,and these have the following two subsets: A_1,A_2,B_1,and B_2. From A to B,the chemical types of groundwater become more complex. The hydrochemistry types of class A were all of the HCO_3-Ca type,while those of class B_1 were HCO_3-Ca,HCO_3-Na·Ca,and HCO_3-Na·Ca·Mg,and those of class B_2 were HCO_3-Ca,HCO_3-Ca·Mg,HCO_3-Na·Ca. In order to further explore the influence factors of groundwater hydrochemistry,we determined that carbonate rocks,human activities,evaporite rocks,and silicate rocks were the main material sources of groundwater through factor analysis and path model analysis. Among all of the above factors,the dissolution of magnesium sulfate evaporite and the actions of human activities were found to be important reasons for the formation of carbonate rocks,which served as the main sources of groundwater chemical components and diverse hydrochemistry characteristics.
引文
[1]杨平恒,袁道先,叶许春,等.降雨期间岩溶地下水化学组分的来源及运移路径[J].科学通报,2013,58(18):1755-1763.Yang P H,Yuan D X,Ye X C,et al. Sources and migration path of chemical compositions in a Karst groundwater system during rainfall events[J]. Chinese Science Bulletin,2013,58(20):2488-2496.
    [2]袁道先.我国西南岩溶石山的环境地质问题[J].世界科技研究与发展,1997,19(5):41-43.Yuan D X. On the environmental and geologic problems of karst mountains and rocks in the south-west China[J]. World SciTech R&D,1997,19(5):41-43.
    [3]蒋忠诚,夏日元,时坚,等.西南岩溶地下水资源开发利用效应与潜力分析[J].地球学报,2006,27(5):495-502.Jiang Z C,Xia R Y,Shi J,et al. The Application effects and exploitation capacity of Karst underground water resources in Southwest China[J]. Acta Geoscientica Sinica,2006,27(5):495-502.
    [4]袁道先.现代岩溶学和全球变化研究[J].地学前缘,1997,4(1-2):17-25.Yuan D X. Modern karstology and global change study[J].Earth Science Frontiers,1997,4(1-2):17-25.
    [5] Dar F A,Perrin J,Ahmed S,et al. Review:Carbonate aquifers and future perspectives of Karst hydrogeology in India[J].Hydrogeology Journal,2014,22(7):1493-1506.
    [6] Ahmed A A. Using Generic and Pesticide DRASTIC GIS-based models for vulnerability assessment of the Quaternary aquifer at Sohag,Egypt[J]. Hydrogeology Journal,2009,17(5):1203-1217.
    [7] Apambire W B, Boyle D R, Michel F A. Geochemistry,genesis,and health implications of fluoriferous groundwaters in the upper regions of Ghana[J]. Environmental Geology,1997,33(1):13-24.
    [8] Kundu N, Panigrahi M, Tripathy S, et al. Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh District of Orissa,India[J]. Environmental Geology,2001,41(3-4):451-460.
    [9] Noori R, Sabahi M S, Karbassi A R, et al. Multivariate statistical analysis of surface water quality based on correlations and variations in the data set[J]. Desalination,2010,260(1-3):129-136.
    [10] SzabóN P. Hydraulic conductivity explored by factor analysis of borehole geophysical data[J]. Hydrogeology Journal,2015,23(5):869-882.
    [11] Boukhemacha M A, Gogu C R, Serpescu I, et al. A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city,Romania[J]. Hydrogeology Journal,2015,23(3):437-450.
    [12] StollenwerK K G. Geochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe,Arizona[J]. Applied Geochemistry,1994,9(4):353-369.
    [13]慈龙骏.我国荒漠化发生机理与防治对策[J].第四纪研究,1998,18(2):97-107.Ci L J. Mechanism of desertification and sustainable strategies to combat desertification in China[J]. Quaternary Sciences,1998,18(2):97-107.
    [14]袁道先.地质作用与碳循环研究的回顾和展望[J].科学通报,2011,56(26):2157.
    [15] Salama R B,Otto C J,FitzpatricK R W. Contributions of groundwater conditions to soil and water salinization[J].Hydrogeology Journal,1999,7(1):46-64.
    [16] Coleman M L,Shepherd T J,Durham J J,et al. Reduction of water with zinc for hydrogen isotope analysis[J]. Analytical Chemistry,1982,54(6):993-995.
    [17] Adams S, Titus R, Pietersen K, et al. Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo,South Africa[J]. Journal of Hydrology,2001,241(1-2):91-103.
    [18]李韵珠,石元春.土壤和地下水化学类型和垂向主组分的动态———以河北曲周盐渍土区为例[J].土壤学报,2003,40(4):481-489.Li Y Z, Shi Y C. Dynamics of chemical types and main components in vertical profile of soil and groundwater salt-affected soil area in QuZhou,He Bei[J]. Acta Pedologica Sinica,2003,40(4):481-489.
    [19]孟利,左锐,王金生,等.基于PCA-APCS-MLR的地下水污染源定量解析研究[J].中国环境科学,2017,37(10):3773-3786.Meng L, Zuo R, Wang J S, et al. Quantitative source apportionment of groundwater pollution based on PCA-APCSMLR[J]. China Environmental Science,2017,37(10):3773-3786.
    [20] Harrington G A,CooK P G,Herczeg A L. Spatial and temporal variability of ground water recharge in central Australia:a tracer approach[J]. Ground Water,2002,40(5):518-527.
    [21] Salinas-Garcia J R,Hons F M,Matocha J E,et al. Soil carbon and nitrogen dynamics as affected by long-term tillage and nitrogen fertilization[J]. Biology and Fertility of Soils,1997,25(2):182-188.
    [22] Blackmer A M,Green C J. Nitrogen turnover by sequential immobilization and mineralization during residue decomposition in soils[J]. Soil Science Society of America Journal,1995,59(4):1052-1058.
    [23] De Montety V,Martin J B,Cohen M J,et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology,2011,283(1-2):31-43.
    [24] Yidana S M. Groundwater classification using multivariate statistical methods:Birimian Basin, Ghana[J]. Journal of Environmental Engineering,2010,136(12):1379-1388.
    [25] Omo-Irabor O O,Olobaniyi S B,Oduyemi K,et al. Surface and groundwater water quality assessment using multivariate analytical methods:A case study of the Western Niger Delta,Nigeria[J].Physics and Chemistry of the Earth,Parts A/B/C,2008,33(8-13):666-673.
    [26] Hopke P F,Gladney E S,Gordon G E,et al. The use of multivariate analysis to identify sources of selected elements in the Boston urban aerosol[J]. Atmospheric Environment(1967),1976,10(11):1015-1025.
    [27]马荣,石建省.模糊因子分析在地下水污染评估中的应用———以河南省洛阳市为例[J].地球学报,2011,32(5):611-622.Ma R,Shi J S. Assessing groundwater pollution using fuzzy factor analysis method:A case study of Luoyang City in Henan Province[J]. Acta Geoscientica Sinica,2011,32(5):611-622.
    [28]陈小兵,周宏飞,张群.地下水资源补给量的因子分析[J].干旱区资源与环境,2004,18(5):43-46.Chen X B,Zhou H F,Zhang Q. Factor analysis on groundwater recharge[J]. Journal of Arid Land Resources and Environment,2004,18(5):43-46.
    [29]崔健,都基众,马宏伟,等.基于因子分析的浑河冲洪积扇地浅层地下水水质影响因素辨析[J].中国农村水利水电,2011,(7):45-48,51.Cui J,Du J Z,Ma H W,et al. Distinguishing significant factors for shallow groundwater quality in the Hunhe River alluvial fan based on factor analysis[J]. China Rural Water and Hydropower,2011,(7):45-48,51.
    [30] Montcoudiol N, Molson J, Lemieux J M. Groundwater geochemistry of the Outaouais Region(Québec,Canada):a regional-scale study[J]. Hydrogeology Journal,2015,23(2):377-396.
    [31]张陶,蒲俊兵,袁道先,等.广西官村岩溶溪流中生物地球化学控制的DIC和NO3-昼夜变化研究[J].地质学报,2016,90(8):1965-1977.Zhang T,Pu J B,Yuan D X,et al. Biogeochemical controls on daily cycling of DIC and NO3-of Guancun karst stream in Guangxi[J]. Acta Geologica Sinica,2016,90(8):1965-1977.
    [32]程怀德,马海州,山发寿,等.基于相化学研究老挝万象钾镁盐矿床形成的机制[J].地球学报,2010,31(2):194-202.Cheng H D,Ma H Z,Shan F S,et al. A Study of the formation mechanism of the Vientiane potash deposit based on phase chemistry[J]. Acta Geoscientica Sinica,2010,31(2):194-202.
    [33] Viers J, Oliva P, Dandurand J L, et al. 7. 6-chemical weathering rates, CO2consumption, and control parameters deduced from the chemical composition of rivers[J]. Treatise on Geochemistry,2014,7:175-194.
    [34]洪涛,谢运球,喻崎雯,等.乌蒙山重点地区地下水水化学特征及成因分析[J].地球与环境,2016,44(1):11-18.Hong T,Xie Y Q,Yu Q W,et al. Hydrochemical characteristics study and genetic analysis of groundwater in a key region of the Wumeng Mountain, Southwestern China[J]. Earth and Environment,2016,44(1):11-18.
    [35]钟金先,李成,刘兆鑫,等.基岩裂隙水水化学特征的聚类分析———以乌蒙山重点地区为例[J].四川环境,2017,36(5):53-58.Zhong J X,Li C,Liu Z X,et al. Cluster analysis of chemical characteristics of bedrock fissure water————Taking the Wu Mengshan key areas for example[J]. Sichuan Environment,2017,36(5):53-58.
    [36]李甜甜,季宏兵,江用彬,等.赣江上游河流水化学的影响因素及DIC来源[J].地理学报,2007,62(7):764-775.Li T T,Ji H B,Jiang Y B,et al. Hydro-geochemistry and the sources of DIC in the upriver tributaries of the Ganjiang River[J]. Acta Geographica Sinica,2007,62(7):764-775.
    [37]张春来,曹建华,刘晓华,等.河水化学离子成因及影响因素的因子分析探讨[J].广西师范大学学报(自然科学版),2013,31(2):123-132.Zhang C L,Cao J H,Liu X H,et al. Origin and influencing factors of hydrochemical of river ion by factor analysis[J].Journal of Guangxi Normal University(Natural Science Edition),2013,31(2):123-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700