用户名: 密码: 验证码:
煤炭开采与岩层运动
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Behaviors of strata movement in coal mining
  • 作者:钱鸣高 ; 许家林
  • 英文作者:QIAN Minggao;XU Jialin;China University of Mining and Technology(Beijing);State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology;
  • 关键词:岩层运动 ; “砌体梁”结构 ; 关键层 ; 块体运动 ; 科学采矿
  • 英文关键词:strata movement;;voussoir beam structure;;key strata;;block movement;;sustainable mining
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京);中国矿业大学煤炭资源与安全开采国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.295
  • 基金:国家重点研发计划资助项目(2016YFC0501100)
  • 语种:中文;
  • 页:MTXB201904001
  • 页数:12
  • CN:04
  • ISSN:11-2190/TD
  • 分类号:5-16
摘要
采矿是从地层内获取煤炭资源的过程,是一次对矿区地层的扰动,必然引起岩层运动和地层内应力场与裂隙场的改变,从而影响矿压显现、地下水流失和地表沉陷等安全与环境问题。因此,采动岩层运动及其对安全与环境的影响规律是煤炭开采的基础科学问题,对这些规律的认识将提高煤炭开采的科学性。由于采动岩层运动的复杂性,至今仍然有很多问题没有解决。介绍了采动覆岩运动的块体结构形式、岩层运动对工作面空间维护的影响、岩层运动对覆岩裂隙演化与地下水和地表沉陷等环境问题的影响、岩层运动对采动应力场影响等方面的研究进展与存在的主要问题,明确了岩层运动研究的重点和方向。结果表明:采动岩层运动是一种坚硬岩层破断前的应力集中和破断后形成块体的力学行为,坚硬岩层的破断和块体运动具有突变和不连续性,破断块体互相咬合可能形成"大变形"结构,块体咬合结构的S-R稳定性将对矿压显现、采动裂隙和地表沉陷等产生重要影响。岩层运动是一个"黑箱",目前仅仅在控制原理上得到解释,达到"灰箱"程度。因此,岩层控制在很多场合只能是"宏观"控制。"砌体梁"结构力学模型的建立明确了支护原理和支架工作阻力估算原则。一般情况下,按照4~8倍采高岩柱自重估算支架工作阻力可以满足工程需要,在大采高或薄直接顶、浅部开采、特殊压架条件等情况下支架工作阻力估算应采用上限,个别条件下单纯提高支架阻力仍无法彻底解决压架问题,还需配套实施相关工程措施加以防范。根据覆岩关键层破断块体结构的稳定性,将我国不同表土层条件下的地表沉陷划分为3种类型,提出应根据地表沉陷的不同类型进行预测、控制与选择复垦方法。关键层的赋存与破断特性对采动应力分布影响显著。目前,由于应力集中引起的事故比瓦斯事故更难以预防,为此,深部和构造应力集中区域只能开设试验矿井。
        Coal mining involves extracting the resources from the earth. It will disturb the strata in the mining area,which inevitably causes strata movement and the change of stress and fracture fields, thus affect safety and environmental such as the occurrence of ground pressure, groundwater loss and surface subsidence. Therefore, mining-induced strata movement and its influence on safety and environment are the basic scientific problems of coal mining. The understanding of these laws will improve the scientific nature of coal mining. Because of the complexity of strata movement, however, there are still several issues to be addressed. This paper introduces the mining-induced strata movement of the block structure, which is followed by the review of advances and outstanding issues in the influence of strata movement on longwall face support, mining-induced fractures evolution, groundwater, surface subsidence, and mininginduced stress field. It is found that mining-induced strata movement is a combination of stress concentration caused by the span of thick and hard strata and the mechanical behaviors of the rock blocks associated with the breakage of the strata. During the collapse of thick strata and the corresponding rock block movement, the characteristics of mutations and discontinuities typically occur. In such a process,a structure that can sustain large deformation may be formed after the rock blocks are hinged. The "R-S" stability of the structure causes significant influence to such phenomena as the occurrence of ground pressure, mining-induced fractures and surface subsidence. Mining-induced strata movement is like a "black box" system. Currently it is just explained in the aspect of control principle,and reaches the level of a "gray box" system. Therefore,strata control refers to "macroscopic" control in many engineering cases. The Voussoir Beam model has established longwall support theory and the estimation principle of support working resistance. In a general case,the support resistance that is determined as the weight of the overburden with a thickness of 4-8 times the mining height could meet the safety requirements of most mining projects. Specially,8 times should be chosen for the longwalls with a large mining height or a thin immediate roof,a shallow cover depth,or the support crush risks. As for some particular conditions, however, support crush cannot be avoided by the single measure of increasing support resistance, but should be combined with other engineering precautionary measures. According to the stability of rock blocks of overburden key strata, three types were proposed to characterize surface subsidence for varied alluvium conditions in different areas of China. It is suggested that subsidence type should be considered during the selection of subsidence prediction, control and reclamation methods. The presence of key strata and the corresponding breakage characteristics play a vital role in the distribution of mining-induced stress. At present, the prevention of accidents caused by stress concentration is harder than that of methane accidents. With this in mind, it is suggested that only test-style mines could be established in the areas with tectonic stress concentration or a large depth. This paper points out the direction for the study of strata movement and the corresponding influence on safety and environment in the coal mining industry.
引文
[1]钱鸣高.岩层控制与煤炭科学开采文集[M].徐州:中国矿业大学出版社,2011.
    [2]钱鸣高,石平五,许家林矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.
    [3]钱鸣高,缪协兴,许家林,等岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [4]钱鸣高采场上覆岩层岩体结构模型及其应用[J].中国矿业学院学报,1982,11(2):1-11.QIAN Minggao. The structural model of overlying strata in the stope and its application[J]. Journal of China University of Mining&Technology,1982,11(2):1-11.
    [5]钱鸣高,赵国景.老顶断裂前后的矿山压力变化[J].中国矿业学院学报,1986,15(4):11-19.QIAN Minggao, ZHAO Guojing. The influence of the fracture of the main roof on the mining ground pressure[J]. Journal of China University of Mining&Technology,1986,15(4)::11-19.
    [6]左建平,孙运江,钱鸣高.厚松散层覆岩移动机理及“类双曲线”模型[J].煤炭学报,2017,42(6):1372-1379.ZUO Jianping,SUN Yunjiang,QIAN Minggao. Movement mechanism and analogous hyperbola model of overlying strata with thick alluvium[J]. Journal of China Coal Society,2017,42(6):1372-1379.
    [7]李鸿昌,钱鸣高孔庄矿上行开采的研究[J].中国矿业学院学报,1982,11(2):12-24.LI Hongchang,QIAN Minggao. A study of ascending mining method at Kongzhuang Mine[J]. Journal of China University of Mining&Technology,1982,11(2):12-24.
    [8]郝宪杰,许家林.综采支架工作阻力确定方法综述[J].神华科技,2009,7(4):12-16.HAO Xianjie,XU Jialin. Summary on determination of the reasonable working resistance of hydraulic support in fully-mechanized face[J].Shenhua Science and Technology,2009,7(4):12-16.
    [9]许家林,鞠金峰.特大采高综采面关键层结构形态及其对矿压显现的影响[J].岩石力学与工程学报,2011,30(8):1547-1556.XU Jialin,JU Jinfeng. Structural morphology of key stratum and its influence on strata behaviors in fully-mechanized face[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1547-1556.
    [10] JU Jinfeng, XU Jialin. Structural characteristics of key strata and strata behaviour of a fully mechanized longwall face with7. 0 m height chocks[J]. International Journal of Rock Mechanics and Mining Sciences,2013,58:46-54.
    [11]许家林,朱卫兵,鞠金峰.浅埋煤层开采压架类型[J].煤炭学报,2014,39(8):1625-1634.XU Jialin,ZHU Weibing,JU Jinfeng. Supports crushing types in the longwall mining of shallow seams[J]. Journal of China Coal Society,2014,39(8):1625-1634.
    [12]侯忠杰.浅埋煤层关键层研究[J].煤炭学报,1999,24(4):359-363.HOU Zhogjie. Study on key stratum in shallow seam[J]. Journal of China Coal Society,1999,24(4):359-363.
    [13]黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析[J].煤炭学报,1999,24(6):581-585.HUANG Qingxiang, QIAN Minggao,SHI Pingwu. Structural analysis of main roof stability during periodic weighting in longwall face[J]. Journal of China Coal Society, 1999,24(6):581-585.
    [14]许家林,朱卫兵,鞠金峰,等.采场大面积压架冒顶事故防治研究[J].煤炭科学技术,2015,43(6):1-8.XU Jialin,ZHU Weibing,JU Jinfeng. Study on prevention and control technology of large area powered support jammed and roof falling accident occurred in coal mining face[J]. Coal Science and Technology,2015,43(6):1-8.
    [15] JU Jinfeng,XU Jialin,ZHU Weibing. Longwall chock sudden closure incident below coal pillar of adjacent upper mined coal seam under shallow cover in the Shendong coalfield[J]. International Journal of Rock Mechanics and Mining Sciences,2015,77:192-201.
    [16] LI Zhu,XU Jialin,JU Jinfeng, et al. The effects of the rotational speed of voussoir beam structures formed by key strata on the ground pressure of stopes[J]. International Journal of Rock Mechanics and Mining Sciences,2018,108:67-79.
    [17]许家林,朱卫兵,王晓振,等.沟谷地形对浅埋煤层开釆矿压显现的影响机理[J].煤炭学报,2012,37(2):179-185.XU Jialin, ZHU Weibing, WANG Xioazhen, et al. Influencing mechanism of gully terrain on ground pressure behaviors in shallow seam longwall mining[J]. Journal of China Coal Society, 2012,37(2):179-185.
    [18]许家林,蔡东,傅昆岚.邻近松散承压含水层开采工作面压架机理与防治[J].煤炭学报,2007,32(12):1239-1243.XU Jialin,CAI Dong,FU Kunlan. Mechanism of supports crushing accident and its preventive measures during coal mining near unconsolidated confined aquifer[J]. Journal of China Coal Society,2007,32(12):1239-1243.
    [19]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.QIAN Minggao, XU Jialin, MIAO Xiexing. Green technique in coal mining[J]. Journal of China University of Mining&Technology,2003,32(4):343-348.
    [20]钱鸣高,许家林,王家臣.再论煤炭的科学开采[J].煤炭学报,2018,43(1):1-12.QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society, 2018,43(1):1-12.
    [21]许家林.煤矿绿色开采[M].徐州:中国矿业大学出版社,2011.
    [22]许家林.岩层采动裂隙演化规律与应用[M].徐州:中国矿业大学出版社,2016.
    [23]许家林,钱鸣高.关键层运动对覆岩和地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.XU Jialin, QIAN Minggao. Study on the influence of key strata movement on subsidence[J]. Journal of China Coal Society,2000,25(2):122-126.
    [24]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,23(5):466-469.QIAN Minggao,XU Jialin. Study on the"O-shape"circle distribution characteristics of mining-induced fractures in the overlaying strata[J]. Journal of China Coal Society, 1998,23(5):466-469.
    [25]彭小亚,许家林,吴仁伦,等.工作面采高对“0”形圈分布规律的影响研究[J].煤炭科学技术,2012,40(1):8-11.PENG Xiaoya, XU Jialin, WU Renlun,et al. Study on coal mining height of coal mining faceaffected to"O"ring distribution law[J]. Coal Science and Technology,2012,40(1):8-11.
    [26]王晓振,许家林,朱卫兵.主关键层结构稳定性对导水裂隙演化的影响研究[J].煤炭学报,2012,37(4):606-612.WANG Xiaozhen, XU Jialin, ZHU Weibing. Influence of primary key stratum structure stability on evolution of water flowing fracture[J]. Journal of China Coal Society,2012,37(4):606-612.
    [27]许家林,王晓振,朱卫兵.松散承压含水层下釆煤压架突水机理与防治[M].徐州:中国矿业大学出版社,2012.
    [28]范立民,向茂西,彭捷,等.毛乌素沙漠与黄土高原接壤区泉的演化分析[J].煤炭学报,2018,43(1):207-218.FAN Limin,XIANG Maoxi,PENG Jie,et al. Evolution analysis on springs in contiguous area of Maowusu Desert and Loess Plateau[J]. Journal of China Coal Society,2018,43(1):207-218.
    [29]范立民,贺卫中,彭捷,等.高强度煤炭开采对烧变岩泉的影响[J].煤炭科学技术,2017,45(7):127-131.FAN Limin,HE Weizhong, PENG Jie,et al. Influence of high-intensity coal mining on burned rock spring[J]. Coal Science and Technology,2017,45(7):127-131.
    [30]张广磊,鞠金峰,许家林.沟谷地形下煤炭开采对地表径流的影响[J].煤炭学报,2016,41(5):1219-1226.ZHANG Guanglei,JU Jinfeng,XU Jialin. Influence of longwall mining on surface runoffs in gully terrain area[J]. Journal of China Coal Society,2016,41(5):1219-1226.
    [31]晋华,杨锁林,郑秀清,等.晋祠岩溶泉流量衰竭分析[J].太原理工大学学报,2005,36(4):488-490.JIN Hua,YANG Suolin,ZHENG Xiuqing,et al. Analysis of the Reduction in Flow from Jinci Springs[J]. Journal of Taiyuan University of Technology,2005,36(4):488-490.
    [32]鞠金峰,许家林,李全生,等.我国水体下保水采煤技术研究进展[J].煤炭科学技术,2018,46(1):12-19.JU Jinfeng,XU Jialin,LI Quansheng,et al. Progress of water-preserved coal mining under water in China[J]. Coal Science and Technology,2018,46(1):12-19.
    [33]顾大钊.煤矿地下水库理论框架和技术体系[J].煤炭学报,2015,40(2):239-246.GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society,2015,40(2):239-246.
    [34]范立民,马雄德,冀瑞君.西部生态脆弱矿区保水采煤研究与实践进展[J].煤炭学报,2015,40(8):1711-1717.FAN Limin, FENG Xiongde,JI Ruijun. Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area[J]. Journal of China Coal Society, 2015,40(8):1711-1717.
    [35]鞠金峰,许家林,朱卫兵.西部缺水矿区地下水库保水的库容研究[J].煤炭学报,2017,42(2):381-387.JU Jinfeng,XU Jianlin,ZHU Weibing. Storage capacity of underground reservoir in the Chinese western water-short coalfield[J].Journal of China Coal Society,2017,42(2):381-387.
    [36]许家林,钱鸣高,金宏伟.基于岩层移动的“煤与煤层气共釆”技术研究[J].煤炭学报,2004,29(2):129-132.XU Jialin,QIAN Minggao,JIN Hongwei. Study on"coal and coalbed methane simultaneous extraction"technique on the basis of strata movement[J]. Journal of China Coal Society,2004,29(2):129-132.
    [37]许家林,钱鸣高.地面钻井抽放上覆远距离卸压煤层气试验研究[J].中国矿业大学学报,2000,29(1):78-82.XU Jialin,QIAN Minggao. Study on drainage of relieved methane from overlying coal seam far away from the protective seam by surface well[J]. Journal of China University of Mining&Technology,2000,29(1):78-82.
    [38]屈庆栋,许家林,钱鸣高.关键层运动对邻近层瓦斯涌出影响的研究[J].岩石力学与工程学报,2007,26(7):1478-1484.QU Qingdong, XU Jialin, QIAN Minggao. Study on influences of key strata movement on gas Emissions of adjacent layers[J].Chinese Journal of Rock Mechanics and Engineering, 2007,26(7):1478-1484.
    [39] QU Qingdong,XU Jialin,WU Renlun,et al. Three-zone characterisation of coupled strata and gas behaviour in multi-seam mining[J]. International Journal of Rock Mechanics and Mining Sciences,2015,78:91-98.
    [40] HU Guozhong,XU Jialin,REN Ting,et al. Adjacent seam pressurerelief gas drainage technique based on ground movement for initial mining phase of longwall face[J]. International Journal of Rock Mechanics and Mining Sciences,2015,77:237-245.
    [41]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005,24(5):787-791.XU Jialin, QIAN Minggao, ZHU Weibing. Study on influences of primary key stratum on surface dynamic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(5):787-791.
    [42]朱卫兵,许家林,施喜书,等.覆岩主关键层运动对地表沉陷影响的钻孔原位测试研究[J].岩石力学与工程学报,2009,28(2):403-409.ZHU Weibing,XU Jialin,SHI Xishu,et al. Research on influence of overburden primary key stratum movement on surface subsidence with in-situ drilling test[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2);403-409.
    [43] JU Jinfeng,XU Jialin. Surface stepped subsidence related to topcoal caving longwall mining of extremely thick coal seam under shallow cover[J]. International Journal of Rock Mechanics and Mining Sciences,2015,78:27-35.
    [44]何昌春.基于关键层结构的地表沉陷预计方法研究[D].徐州:中国矿业大学,2018.HE Changchun. Method to predict the surface subsidence based on the key strata structure[D]. Xuzhou:China University of Mining&Technology,2018.
    [45] WANG Feng,XU Jialin,XIE Jianlin. Effect of arch structure in unconsolidated layers on fracture and failure of overlying strata[J].International Journal of Rock Mechanics and Mining Sciences,2019,114:141-152.
    [46] WANG Binglong,XU Jialin,XUAN Dayang. Time function model of dynamic surface subsidence assessment of grout-injected overburden of a coal mine[J]. International Journal of Rock Mechanics and Mining Sciences,2018,104:1-8.
    [47]许家林,朱卫兵,李兴尚,等.控制煤矿开采沉陷的部分充填开采技术研究[J].采矿与安全工程学报,2006,23(1):6-11.XU Jialin,ZHU Weibing,LI Xingshang,et al. Study of the technology of partial-filling to control coal mining subsidence[J]. Journal of Mining&Safety Engineering,2006,23(1):6-11.
    [48]许家林,轩大洋,朱卫兵,等.部分充填采煤技术的研究与实践[J].煤炭学报,2015,40(6):1303-1312.XU Jialin,XUAN Dayang,ZHU Weibing,et al. Study and application of coal mining with partial backfilling[J]. Journal of China Coal Society,2015,40(6):1303-1312.
    [49]许家林,尤琪,朱卫兵,等.条带充填控制开采沉陷的理论研究[J].煤炭学报,2007,32(2):119-122.XU Jialin,YOU Qi,ZHU Weibing,et al. Theoretical study of stripfilling to control mining subsidence[J]. Journal of China Coal Society,2007,32(2):119-122.
    [50] ZHU Weibing, XU Jingmin,XU Jialin,et al. Pier-column backfill mining technology for controlling surface subsidence[J]. International Journal of Rock Mechanics and Mining Sciences,2017,96:58-65.
    [51] XUAN Dayang,XU Jialin,WANG Binglong,et al. Borehole investigation of the effectiveness of grout injection technology on coal mine subsidence control[J]. Rock Mechanics and Rock Engineering,2015,48(6):2435-2445.
    [52] XUAN Dayang, WANG Binglong,XU Jialin. A shared borehole approach for coal-bed methane drainage and ground stabilization with grouting[J]. International Journal of Rock Mechanics and Mining Sciences,2016,86:235-244.
    [53]郭杰凯.覆岩主关键层对超前支承压力的影响规律研究[D].徐州:中国矿业大学,2015.
    [54]轩大洋,许家林,冯建超,等.巨厚火成岩下采动应力演化规律与致灾机理[J].煤炭学报,2011,36(8):1252-1257.XUAN Dayang, XU Jialin, FENG Jianchao, et al. Disaster and evolvement law of mining-induced stress under extremely thick igneous rock[J]. Journal of China Coal Society,2011,36(8):1252-1257.
    [55] XUAN Dayang,XU Jialin,ZHU Weibing. Dynamic disaster control under a massive igneous sill by grouting from surface boreholes[J]. International Journal of Rock Mechanics&Mining Sciences,2014,71:176-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700