用户名: 密码: 验证码:
Trace element partitioning between amphibole and hydrous silicate glasses at 0.6–2.6 GPa
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Trace element partitioning between amphibole and hydrous silicate glasses at 0.6–2.6 GPa
  • 作者:Bo ; Zhang ; Xianxu ; Hu ; Peng ; Li ; Qizhe ; Tang ; Wenge ; Zhou
  • 英文作者:Bo Zhang;Xianxu Hu;Peng Li;Qizhe Tang;Wenge Zhou;Key Laboratory for High Temperature and High Pressure Study of the Earth's Interior, Institute of Geochemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Guizhou University of Finance and Economics;Guizhou Institute of Technology;
  • 英文关键词:Amphibole;;Silicate glass;;Trace elements;;Partition coefficients;;Lattice strain model
  • 中文刊名:DQHB
  • 英文刊名:地球化学学报(英文版)
  • 机构:Key Laboratory for High Temperature and High Pressure Study of the Earth's Interior, Institute of Geochemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Guizhou University of Finance and Economics;Guizhou Institute of Technology;
  • 出版日期:2019-05-17
  • 出版单位:Acta Geochimica
  • 年:2019
  • 期:v.38
  • 基金:financial support of the National Natural Science Foundation of China (Grant Nos. 41274105 and 41772043);; the Joint Research Fund in Huge Scientific Equipment (U1632112) under cooperative agreement between NSFC and CAS;; the Chinese Academy of Sciences ‘‘Light of West China’’ Program (Dawei Fan, 2017);; Youth Innovation Promotion Association CAS (Dawei Fan, 2018);; the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB 18010401);; the CPSF-CAS Joint Foundation for Excellent Postdoctoral Fellows (Grant No. 2017LH014);; China Postdoctoral Science Foundation (Grant No. 2018M631104);; the Guizhou Provincial Science and Technology Foundation (20171078);; the Guizhou Institute of Technology Foundation (XJGC20130901)
  • 语种:英文;
  • 页:DQHB201903008
  • 页数:16
  • CN:03
  • ISSN:52-1161/P
  • 分类号:90-105
摘要
Partitioning behavior between amphibole and silicate glass of thirty-three minor and trace elements(Sc,Ti, V, Cr, Co, Rb, Sr, P, Y, Zr, Nb, Cs, Ba, K, La, Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb,Th, and U) have been determined experimentally. Products of crystallization of hydrous basalt melts from 0.6 GPa/860 °C up to 2.6 GPa/970 °C were obtained in a multianvil apparatus. Major and trace element compositions of amphibole and glass were determined with a combination of electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The main mineral phase is calcic amphibole, and the coexisting glass compositions are tonalite, granodiorite, and granite. The compatibility of rare earth elements increase at 915 °C and then decrease at 970 °C, but the compatibility of most of these elements shows a continued, significant increase with increasing pressure. For high-field strength elements, large ion lithophile elements, actinide compatibility decrease with increasing temperature or pressure, but transition metals show a continued increase in compatibility within the temperature–pressure conditions. From mathematical and graphical fitting, we determined best-fit values for the ideal ionic radius(r_0, 1.01–1.04 ?), the strain-free partitioncoefficient(D_0, 1.18–1.58), and apparent Young's modulus(E, 142–370 GPa) for the M4 site in amphibole according to the lattice strain model. The D_0~(M4) for rare earth elements rises at 915 °C and then drops at 970 °C at 0.6 GPa.However, the D_0~(M4) values are positively proportional to the pressure for rare earth elements in the amphibole-glass pairs at 0.6–2.6 GPa and 970 °C. Furthermore, the derived best-fit values for r_0~(M4) and E~(M4) are almost constant and trend to increase with rising temperature and pressure,respectively. The partition coefficient is distinctly different for different melt compositions. The rare earth elements become more enriched in amphibole if the quenched glass is granodiorite or granite compared to the tonalitic glasses.
        Partitioning behavior between amphibole and silicate glass of thirty-three minor and trace elements(Sc,Ti, V, Cr, Co, Rb, Sr, P, Y, Zr, Nb, Cs, Ba, K, La, Ce, Pr,Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb,Th, and U) have been determined experimentally. Products of crystallization of hydrous basalt melts from 0.6 GPa/860 °C up to 2.6 GPa/970 °C were obtained in a multianvil apparatus. Major and trace element compositions of amphibole and glass were determined with a combination of electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The main mineral phase is calcic amphibole, and the coexisting glass compositions are tonalite, granodiorite, and granite. The compatibility of rare earth elements increase at 915 °C and then decrease at 970 °C, but the compatibility of most of these elements shows a continued, significant increase with increasing pressure. For high-field strength elements, large ion lithophile elements, actinide compatibility decrease with increasing temperature or pressure, but transition metals show a continued increase in compatibility within the temperature–pressure conditions. From mathematical and graphical fitting, we determined best-fit values for the ideal ionic radius(r_0, 1.01–1.04 ?), the strain-free partitioncoefficient(D_0, 1.18–1.58), and apparent Young's modulus(E, 142–370 GPa) for the M4 site in amphibole according to the lattice strain model. The D_0~(M4) for rare earth elements rises at 915 °C and then drops at 970 °C at 0.6 GPa.However, the D_0~(M4) values are positively proportional to the pressure for rare earth elements in the amphibole-glass pairs at 0.6–2.6 GPa and 970 °C. Furthermore, the derived best-fit values for r_0~(M4) and E~(M4) are almost constant and trend to increase with rising temperature and pressure,respectively. The partition coefficient is distinctly different for different melt compositions. The rare earth elements become more enriched in amphibole if the quenched glass is granodiorite or granite compared to the tonalitic glasses.
引文
Adam J,Green TH(1994)The effects of pressure and temperature on the partitioning of Ti,Sr and REE between amphibole,clinopyroxene and basanitic melts.Chem Geol 117(1):219-233
    Adam J,Green T(2006)Trace element partitioning between micaand amphibole-bearing garnet lherzolite and hydrous basanitic melt:1.Experimental results and the investigation of controls on partitioning behaviour.Contrib Mineral Petrol 152(1):1-17
    Arzamastsev AA,Arzamastseva LV,Bea F,Montero P(2009)Trace elements in minerals as indicators of the evolution of alkaline ultrabasic dike series:LA-ICP-MS data for the magmatic provinces of northeastern Fennoscandia and Germany.Petrol17(1):46-72
    Blundy J,Dalton J(2000)Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems,and implications for mantle metasomatism.Contrib Mineral Petrol 139(3):356-371
    Blundy J,Wood B(1994)Prediction of crystal-melt partition coefficients from elastic moduli.Lett Nat 372:452-454
    Blundy J,Wood B(2003)Partitioning of trace elements between crystals and melts.Earth Planet Sci Lett 210(3-4):383-397
    Brenan JM,Shaw HF,Ryerson FJ,Phinney DL(1995)Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt.Earth Planet Sci Lett135:1-11
    Brice J(1975)Some thermodynamic aspects of the growth of strained crystals.J Cryst Growth 28(2):249-253
    Chang CY,Li FB,Liu CS,Gao JF,Tong H,Chen MJ(2016)Fractionation characteristics of rare earth elements(REEs)linked with secondary Fe,Mn,and Al minerals in soils.Acta Geochim 35(4):329-339
    Cui LF,Zhao ZQ,Liu CQ,Xu S,Liu TZ,Tu CL,Ding H(2017)Behavior of rare earth elements in granitic profiles,eastern Tibetan Plateau,China.Acta Geochim 36(3):552-555
    Dalpe′C,Baker DR(2000)Experimental investigation of large-ionlithophile-element-,high-field-strength-element-and rare-earthelement-partitioning between calcic amphibole and basaltic melt:the effects of pressure and oxygen fugacity.Contrib Mineral Petrol 140(2):233-250
    Dasgupta R,Hirschmann MM,McDonough WF,Spiegelman M,Withers AC(2009)Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts.Chem Geol 262(1-2):57-77
    Draper DS,Westrenen W(2007)Quantifying garnet-melt trace element partitioning using lattice-strain theory:assessment of statistically significant controls and a new predictive model.Contrib Mineral Petrol 154(6):731-746
    Frei D,Liebscher A,Franz G,Wunder B,Klemme S,Blundy J(2009)Trace element partitioning between orthopyroxene and anhydrous silicate melt on the lherzolite solidus from 1.1 to 3.2 GPa and 1230 to 1535°C in the model system Na2O-CaO-MgO-Al2O3-SiO2.Contrib Mineral Petrol 157(4):473-490
    Green TH,Pearson NJ(1985)Rare earth partitioning between clinopyroxene and silicate liquid at moderate to high pressure.Contrib Mineral Petrol 74:201-216
    Hawthorne FC,Oberti R,Martin RF,Harlow GE,Maresch WV,Schumacher JC,Welch MD(2012)Nomenclature of the amphibole supergroup.Am Miner 97:2031-2048
    Hill E,Blundy JD,Wood BJ(2011)Clinopyroxene-melt trace element partitioning and the development of a predictive model for HFSE and Sc.Contrib Mineral Petrol 161(3):423-438
    Huang XW,Gao JF,Qi L,Meng YM,Wang YC,Dai ZH(2016)Insitu LA-ICP-MS trace elements analysis of magnetite:the Fenghuangshan Cu-Fe-Au deposit,Tongling,Eastern China.Ore Geol Rev 72:746-759
    Klein M,Stosch HG,Seck HA(1997)Partitioning of high fieldstrength and rare-earth elements between amphibole and quartzdioritic to tonalitic melts:an experimental study.Chem Geol138(3):257-271
    Klemme S,Dalpe′C(2003)Trace-element partitioning between apatite and carbonatite melt.Am Mineral 88(4):639-646
    Klemme S,Blundy JD,Wood BJ(2002)Experimental constraints on major and trace element partitioning during partial melting of eclogite.Geochim Cosmochim Acta 66(17):3109-3123
    Klemme S,Prowatke S,Hametner K,Gunther D(2005)Partitioning of trace elements between rutile and silicate melts:implications for subduction zones.Geochim Cosmochim Acta69(9):2361-2371
    Landwehr D,Blundy J,Chamorro-Perez EM,Hill E,Wood B(2001)U-series disequilibria generated by partial melting of spinel lherzolite.Earth Planet Sci Lett 188(3):329-348
    LaTourrette T,Hervig RL,Holloway JR(1995)Trace element partitioning between amphibole,phlogopite,and basanite melt.Earth Planet Sci Lett 135(1):13-30
    Liu Y,Hu Z,Gao S,Gunther D,Xu J,Gao C,Chen H(2008)In-situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chem Geol257(1-2):34-43
    Lundstrom C,Gill J,Williams Q(2000)A geochemically consistent hypothesis for MORB generation.Chem Geol 162(2):105-126
    Mollo S,Blundy J,Giacomoni P,Nazzari M,Scarlato P,Coltorti M,Langone A,Andronico D(2017)Clinopyroxene-melt element partitioning during interaction between trachybasaltic magma and siliceous crust:clues from quartzite enclaves at Mt.Etna volcano.Lithos 284:447-461
    Morgan GB,London D(2005)Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses.Am Mineral 90:1131-1138
    Nandedkar RH,Ulmer P,Muntener O(2014)Fractional crystallization of primitive hydrous arc magmas:an experimental study at0.7 GPa.Contrib Mineral Petrol 167(6):1015
    Nandedkar RH,Hurlimann N,Ulmer P,Muntener O(2016)Amphibole-melt trace element partitioning of fractionating calc-alkaline magmas in the lower crust:an experimental study.Contrib Mineral Petrol 171(8-9):1-25
    Nardi LVS,Formoso MLL,Muller IF,Fontana E,Jarvis K,Lamara?o C(2013)Zircon/rock partition coefficients of REEs,Y,Th,U,Nb,and Ta in granitic rocks:uses for provenance and mineral exploration purposes.Chem Geol 335:1-7
    Olin PH,Wolff JA(2010)Rare earth and high field strength element partitioning between iron-rich clinopyroxenes and felsic liquids.Contrib Mineral Petrol 160(5):761-775
    Onuma N,Higuchi H,Wakita H,Nagasawa H(1968)Trace element partition between two pyroxenes and the host lava.Earth Planet Sci Lett 5:47-51
    Parker MVK,Liebscher A,Frei D,Sijl JV,Westrenen WV,Blundy J,Franz G(2010)Experimental and computational study of trace element distribution between orthopyroxene and anhydrous silicate melt:substitution mechanisms and the effect of iron.Contrib Mineral Petrol 159(4):459-473
    Prowatke S,Klemme S(2006)Trace element partitioning between apatite and silicate melts.Geochim Cosmochim Acta70(17):4513-4527
    Qian Q,Hermann J(2013)Partial melting of lower crust at10-15 kbar:constraints on adakite and TTG formation.Contrib Mineral Petrol 165(6):1195-1224
    Severs MJ,Beard JS,Fedele L,Hanchar JM,Mutchler SR,Bodnar RJ(2009)Partitioning behavior of trace elements between dacitic melt and plagioclase,orthopyroxene,and clinopyroxene based on laser ablation ICPMS analysis of silicate melt inclusions.Geochim Cosmochim Acta 73(7):2123-2141
    Shannon RD(1976)Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Cryst A32:17
    Shimizu K,Liang Y,Sun C,Jackson CR,Saal AE(2017)Parameterized lattice strain models for REE partitioning between amphibole and silicate melt.Am Mineral 102:2254-2267
    Stead CV,Tomlinson EL,McKenna CA,Kamber BS(2017)Rare earth element partitioning and subsolidus exchange behaviour in olivine.Chem Geol 475:1-13
    Sun C(2018)Partitioning and partition coefficients.In:White W(ed)Encyclopedia of geochemistry.Encyclopedia of earth sciences series.Springer,Cham
    Sun C,Liang Y(2012)Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat:effects of major element composition water and temperature.Contrib Mineral Petrol 163:807-823
    Sun C,Liang Y(2013a)Distribution of REE and HFSE between lowCa pyroxene and lunar picritic melts around multiple saturation points.Geochim Cosmochim Acta 119:340-358
    Sun C,Liang Y(2013b)The importance of crystal chemistry on REEpartitioning between mantle minerals(garnet clinopyroxene orthopyroxene and olivine)and basaltic melts.Chem Geol358:23-36
    Sun C,Graff M,Liang Y(2017)Trace element partitioning between plagioclase and silicate melt:the importance of temperature and plagioclase composition,with implications for terrestrial and lunar magmatism.Geochim Cosmochim Acta 206:273-295
    Sweeney R,Green D,Sie S(1992)Trace and minor element partitioning between garnet and amphibole and carbonatitic melt.Earth Planet Sci Lett 113(1-2):1-14
    Sweeney RJ,Prozesky V,Przybylowicz W(1995)Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18-46 kb pressure.Geochim Cosmochim Acta 59(18):3671-3683
    Thomas J,Bodnar R,Shimizu N,Sinha A(2002)Determination of zircon/melt trace element partition coefficients from SIMSanalysis of melt inclusions in zircon.Geochim Cosmochim Acta66(16):2887-2901
    Tiepolo M,Vannucci R,Bottazzi P,Oberti R,Zanetti A,Foley SF(2000)Partitioning of REE,Y,Th,U and Pb between pargasite,kaersutite and basante to trachite melts:implications for percolated and veined mantle.Geochem Geophys Geosyst1:2000GC000064
    Tiepolo M,Oberti R,Zanetti A,Vannucci R,Foley SF(2007)Traceelement partitioning between amphibole and silicate melt.Rev Mineral Geochem 67(1):417-452
    Wan F,Zhou W,Jiang N,Fan D,Chen H,Xie H(2009)The partition characteristic of trace elements in the partial melting massive amphibolite at 1.5 Gpa and 950°C.Earth Sci Front16(1):125-133
    Westrenen WV,Draper DS(2007)Quantifying garnet-melt trace element partitioning using lattice-strain theory:new crystalchemical and thermodynamic constraints.Contrib Mineral Petrol154(6):717-730
    Wood BJ,Blundy JD(1997)A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt.Contrib Mineral Petrol 129:166-181
    Xiong X,Adam J,Green T(2005)Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:implications for TTG genesis.Chem Geol 218(3-4):339-359
    Zajacz Z,Halter W(2007)LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals:quantification,data analysis and mineral/melt partitioning.Geochim Cosmochim Acta71(4):1021-1040
    Zhang B,Hu XX,Asimow PD,Zhang X,Xu JG,Fan DW,Zhou WG(2019)Crystal size distribution of amphibole grown from hydrous basaltic melt at 0.6-2.6 GPa and 860-970°C.Am Miner.https://doi.org/10.2138/am-2019-6759
    Zhou WG,Zhang BR,Zhao ZD,Xie HS(1998)Geochemical characteristics and the provenance of cenozoic basic volcanic rocks in western Henan province,China.J Miner Pet 18:51-57(In Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700