用户名: 密码: 验证码:
基于非结构混合网格的CHN-T1标模气动特性预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aerodynamic characteristics prediction of CHN-T1standard model with unstructured grid
  • 作者:张耀冰 ; 唐静 ; 江涛 ; 邓有奇
  • 英文作者:ZHANG Yaobing;TANG Jing;CHEN Jiangtao;DENG Youqi;Computational Aerodynamic Institute of China Aerodynamics Research and Development Center;
  • 关键词:翼身组合体 ; 阻力预测 ; 非结构混合网格 ; 网格收敛
  • 英文关键词:wing-body model;;drag prediction;;unstructured mixed grids;;grid convergence
  • 中文刊名:KQDX
  • 英文刊名:Acta Aerodynamica Sinica
  • 机构:中国空气动力研究与发展中心计算空气动力研究所;
  • 出版日期:2019-04-15
  • 出版单位:空气动力学学报
  • 年:2019
  • 期:v.37;No.175
  • 基金:国家重点研究发展计划(2016YFB0200700)
  • 语种:中文;
  • 页:KQDX201902012
  • 页数:10
  • CN:02
  • ISSN:51-1192/TK
  • 分类号:100-109
摘要
本文使用自行研制的基于非结构混合网格的亚跨超声速流场解算器MFlow,对AeCW-1提供的客机标模CHN-T1进行了数值模拟研究。介绍了非结构混合网格的生成情况,重点分析了网格收敛特性、压力分布、气动特性曲线、流动分离等。计算得到了近似线性的网格收敛特性。随着网格加密,对激波和分离气泡的模拟更精细。尾支撑对气动特性的影响非常明显,特别是对平尾气动特性有很大影响。机翼静气动弹性变形的影响主要是使升力系数和阻力系数减小。湍流模型的QCR修正对大迎角计算结果有较大的影响。计算结果表明,MFlow程序能够准确地预测客机标模的气动特性。
        The precise prediction of lift,drag and moments is one of the key factors in the aerodynamic design of transport aircraft.To assess computational methods as practical aerodynamic tools for aircraft force and moment prediction of industry relevant geometries,numerical investigations of the civil passenger aircraft model CHN-T1 supplied by the AeCW-1 workshop are performed with in-house flow field solver MFlow.The solver,based on a cellcentered finite-volume method,is capable of handling various element types(hexahedron,tetrahedron,prism,pyramid,and other polyhedrons generated when geometrical multi-grid method is used)and suitable for the simulation of subsonic,transonic and supersonic flows.The generation of unstructured mixed grid for CHN-T1 is introduced together with the gridding guidelines,and aerodynamic characteristics are analyzed,including grid convergence properties,pressure distribution,aerodynamic characteristic curve,and flow separation.A nearly linear convergence property is achieved with grid refinement,which implies that the solver is well established,and the solutions are within the asymptotic range.The resolutions for the shock and separation bubble are improved with the grid refinement.Several factors that contribute to the simulations are investigated,including the support system,the static aero-elasticity effects,and turbulence model corrections.It is found that the influence of the sting is significant,especially on the aerodynamic characteristic of the horizontal tail.Lift and drag coefficients are decreased due to the static aero-elasticity effects of the wing.The influence of the QCR correction for turbulence models is evident when the angle of attack is high.It is demonstrated that MFlow is capable of predicting the aerodynamics characteristics for aviation standard models.
引文
[1]SLOTNICK J,KHODADOUST A,ALONSO J,et al.CFDvision 2030study:apath to revolutionaryaerosciences.NASA/CR-2014-218178[R].Washington D C:NASA,2014.
    [2]JAMESON A.Re-engineering the design process through computation[J].Journal of Aircraft,1999,36(1):36-50.
    [3]GOLDHAMMER M I.Boeing 787-design for optimal airplane performance[C].CEAS/KATnet Conference on Key Aerodynamic Technologies,Bremen,Germany,2005.
    [4]MCKINNEY R.Large eddy simulation of aircraft gas-turbine combustors at Pratt and Whitney---current experience and next steps[C].ASME Turbo Expo,Vancouver,Canada,2011.
    [5]CHRISTOPHER J R,EDWARD N T.Summary of data from the sixth AIAA CFD drag prediction workshop:case 1code verification:AIAA 2017-1206[R].Grapevine,Texas:AIAA,2017.
    [6]EDWARD N T,OLAF P B,STEFAN K,et al.Summary of data from the sixth AIAA CFD drag prediction work-shop:CRM cases 2to 5:AIAA 2017-1208[R].Grapevine,Texas:AIAA,2017.
    [7]STEFAN K,DIMITRI M.Summary of data from the sixth AIAA CFD drag prediction workshop:case 5(coupled aerostructural simulation):AIAA 2017-1207[R].Grapevine,Texas:AIAA,2017.
    [8]CHRISTOPHER L R,JEFFREY P S,ANTHONY J S.Overview and summary of the third AIAA high-lift prediction workshop:AIAA 2018-1258[R].Kissimmee,Florida:AIAA,2018.
    [9]王运涛,王光学,陈作斌.CT-1标模大迎角静态气动特性数值模拟[J].航空学报,2008,29(4):859-865.WANG Y T,WANG G X,CHENZ B.Numerical simulation of static aerodynamic characteristics of CT-1model at high angles of attack[J].Acta Aeronautica et Astronautica Sinica,2008,29(4):859-865.(in Chinese)
    [10]洪俊武,王运涛,庞宇飞,等.结构网格方法对高升力构型的应用研究[J].空气动力学学报,2013,31(1):75-81.HONG J W,WANG Y T,PANG Y F,et al.Numerical research of high-lift configurations by structured mesh method[J].Acta Aerodynamica Sinica,2013,31(1):75-81.(in Chinese)
    [11]王运涛,洪俊武,孟德虹.湍流模型对梯形翼高升力构型的影响[J].空气动力学学报,2013,31(1):52-55.WANG Y T,HONG J W,MENG D H.The influence of turbulent models to trap wing simulation[J].Acta Aerodynamica Sinica,2013,31(1):52-55.(in Chinese)
    [12]高飞飞,颜洪,芦彩香.NASA TrapWing高升力标模数值模拟研究[J].航空计算技术,2015,45(1):84-90.GAO F F,YAN H,LU C X.Numerical simulation research of NASA TrapWing model[J].Aeronautical Computing Technique,2015,45(1):84-90.(in Chinese)
    [13]王运涛,孙岩,李松,等.高阶精度方法下的湍流生成项对低速流动数值模拟的影响研究[J].空气动力学学报,2015,33(3):325-329.WANG Y T,SUN Y,LI S,et al.High-order numerical analysis of the effect of turbulent production terms on lowspeed numerical simulation[J].Acta Aerodynamica Sinica,2015,33(3):325-329.(in Chinese)
    [14]MICHAEL A P,JOSHUA A K,TODD M,et al.Unstructured grid adaptation:status,potential impacts,and recommended investments toward CFD vision 2030:AIAA2016-3323[R].Washington,D C:AIAA,2016.
    [15]张耀冰.运输机气动特性混合网格数值模拟研究[D].绵阳:中国空气动力研究与发展中心,2010.ZHANG Y B.Numerical simulation of transport aircraft’s aerodynamic characteristics using mixed grid[D].Mianyang:China Aerodynamics Research and Development Center,2010.(in Chinese)
    [16]张健,邓有奇,李彬,等.一种适用于三维混合网格的GMRES加速收敛新方法[J].航空学报,2016,37(11):3226-3235.ZHANG J,DENG Y Q,LI B,et,al.A new method to accelerate GMRES’s convergence applying to three-dimensional hybrid grid[J].Acta Aeronautica et Astro-nautica Sinica,2016,37(11):3226-3235.(in Chinese)
    [17]李欢,陈江涛,马明生,等.一种基于特征关系式的预处理远场边界条件[J].航空学报,2017,38(12):121364.LI H,CHEN J T,MA M S,et al.A farfield boundary condition for preconditioning method based on characteristic relations[J].Acta Aeronautica et astronautica Sinica,2017,38(12):121364(in Chinese).
    [18]张培红,张耀冰,周桂宇,等.面向非结构混合网格高精度阻力预测的梯度求解方法[J].航空学报,2018,39(1):121415.ZHANG P H,ZHANG Y B,ZHOU G Y,et at.Gradient calculation method of unstructured mixed grids forim-proving drag prediction accuracy[J].Acta Aeronautica et Astronautica Sinica,2018,39(1):121415.(in Chinese).
    [19]CHEN J T,ZHANG Y B,ZHOU N C,et al.Numerical investigations of the high-lift configuration with MFlow solver[J].Journal of Aircraft,2015,52(4):1051-1062.
    [20]余永刚,周铸,黄江涛,等.单通道客机气动标模CHN-T1设计[J].空气动力学学报,2018,36(3):505-513.YU Y G,ZHOU Z,HUANG J T,et al.Aerodynamic design of a standard model CHN-T1for single-aisle passenger aircraft[J].Acta Aerodynamica Sinica,2018,36(3):505-513.(in Chinese)
    [21]李强,刘大伟,许新,等.CHN-T1标模2.4米风洞气动特性试验研究[J].空气动力学学报,2019,37(2):337-344.doi:10.7638/kqdlxxb-2018.0099LI Q,LIU D,XU X,et al.Experimental study of aerodynamic characteristic of CHN-T1standard model in 2.4 mtransonic wind tunnel[J].Acta Aerodynamcia Sinica,2019,33(2):337-344.(in Chinese)
    [22]李伟,王运涛,洪俊武,等.采用TRIP3.0模拟CHN-T1模型气动特性[J].空气动力学学报,2019,37(2):272-279.doi:10.7638/kqdlxxb-2018.0225LI W,WANG Y T,HONG J W,et al.Aerodynamic characteristics simulation of CHN-T1model with TRIP3.0[J].Acta Aerodynamica Sinica,2019,37(2):272-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700