用户名: 密码: 验证码:
联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Monitoring Dynamics of Hailuogou Glacier and the Secondary Landslide Disasters Based on Combination of Satellite SAR and Ground-Based SAR
  • 作者:刘国祥 ; 张波 ; 张瑞 ; 蔡嘉伦 ; 符茵 ; 刘巧 ; 于冰 ; 李志林
  • 英文作者:LIU Guoxiang;ZHANG Bo;ZHANG Rui;CAI Jialun;FU Yin;LIU Qiao;YU Bing;LI Zhilin;Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University;State-Province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety;Institute of Mountain Hazards and Environment, Chinese Academy of Sciences;School of Civil Engineering and Architecture, Southwest Petroleum University;Department of Land Surveying and Geo-Informatics, the Hong Kong Polytechnic University;
  • 关键词:海螺沟冰川 ; 像素偏移追踪 ; 地基SAR ; 冰川运动 ; 滑坡
  • 英文关键词:Hailuogou Glacier;;pixel offset tracking;;ground-based SAR;;glacier movement;;landslide
  • 中文刊名:WHCH
  • 英文刊名:Geomatics and Information Science of Wuhan University
  • 机构:西南交通大学地球科学与环境工程学院;高速铁路运营安全空间信息技术国家地方联合工程实验室;中国科学院水利部成都山地灾害与环境研究所;西南石油大学土木工程与建筑学院;香港理工大学土地测量及地理资讯学系;
  • 出版日期:2019-05-14 10:52
  • 出版单位:武汉大学学报(信息科学版)
  • 年:2019
  • 期:v.44
  • 基金:国家重点研发计划(2017YFB0502700);; 国家自然科学基金(41771402,41871069,41601503,41801399);; 四川省科技支撑计划应用基础面上项目(2018JY0564,2018JY0138)~~
  • 语种:中文;
  • 页:WHCH201907004
  • 页数:16
  • CN:07
  • ISSN:42-1676/TN
  • 分类号:35-50
摘要
受全球气候变化的影响,近年来中国藏东南及横断山脉多数冰川物质持续亏损、运动速度减缓,导致泥石流、滑坡等灾害频发。为突破光学遥感受气候条件制约的瓶颈,联合卫星合成孔径雷达(synthetic aperture radar, SAR)和地基SAR两种技术手段,选取海螺沟冰川作为典型研究区域,开展时序监测分析。基于对近11 a间获取的38景PALSAR系列影像的像素偏移统计表明,海螺沟1号冰川粒雪盆和冰瀑布上沿区域整体运动最快,最大速度超过2 m/d;在海拔2 900~3 900 m的冰舌区,冰川运动趋缓,速度降至0.1~0.4 m/d;随着季节更替,海螺沟冰川运动速度呈周期性波动,积累区的夏冬两季差异为25%~35%,而冰舌段的差异则高达4倍。在年际变化方面,海螺沟1号冰川的运动速度平均减缓率为每年7.27%,消融区内减缓率高达每年15.57%。同时,使用像素偏移追踪和Stacking-InSAR(interferometric SAR)方法在海螺沟U型谷北坡探明了多处不稳定滑坡体,统计分析表明,此类滑坡运动与冰川消融具有强相关性,滑移速度于每年夏季达到峰值,2018年度最大滑移速度为南北向100 mm/d、东西向50 mm/d。进一步分析地基雷达的高频实时监测数据,确定该滑坡体的滑移速度在2018-07-09达到峰值(150 mm/d),并于随后失稳垮塌,详细展现了整个蠕变致灾过程。相关研究数据及监测结果可为冰冻圈及山地灾害研究提供参考。
        Due to the influence of global climate change, most glaciers in southeastern Tibet and Hengduan Mountains in recent years have been losing weight, deteriorating and thinning, which has caused the variation of glacier movement characteristics, resulting in frequent disasters such as debris flows and landslides. In order to break through the bottleneck of optical remote sensing restricted by climatic conditions, this paper combines satellite and ground-based synthetic aperture radar(SAR) technology and selects Hailuogou Glacier(HLG) basin as a typical research area to carry out time series monitoring and analysis. Firstly, by using 38 SAR images acquired by PALSAR-1/2 satellites from 2007 to 2018, the temporal and spatial variations and local surface displacements of HLG in Gongga Mountain are monitored by using the pixel offset tracking(POT) method. The average velocity of HLG No.1 is slowed down by 7.27% per year in recent years, and the slow-down rate reaches 15.57% per year in the ablation areas. At the same time, several unstable landslides are detected by POT and Stacking-InSAR methods at the moraine embankment on the side of the glacier. Statistical analysis confirms that the movement of such landslides is strongly correlated with the melting of the glacier. The sliding speed reaches its peak in summer every year. The maximum sliding speed in 2018 was 100 mm/d in the north-south direction and 50 mm/d in the east-west direction. Subsequently, by utilization of the high-frequency real-time monitoring data of ground-based radar, it is further determined that the sliding speed reaches its peak value of 150 mm/d on July 9, 2018, and abnormal fluctuations occur with the subsequent collapse, which shows in detail the whole process of landslide creep to result in disasters. Relevant research data and the monitoring results can provide a reference for the study of the cryosphere and mountain hazards.
引文
[1] IPCC.Climate Change 2014:The Physical Science Basis.Report of Working Group of the Intergovernmental Panel on Climate Change[M].Cambridge:Cambridge University Press,2014
    [2] Wang W,Yao T,Gao Y,et al.A First-Order Method to Identify Potentially Dangerous Glacial Lakes in a Region of the Southeastern Tibetan Plateau[J].Mountain Research and Development,2011,31(2):122-130
    [3] Wang W,Yao T,Yang X.Variations of Glacial Lakes and Glaciers in the Boshula Mountain Range,Southeast Tibet,from the 1970s to 2009[J].Annals of Glaciology,2011,52(58):9-17
    [4] Tong Liqiang,Tu Jienan,Pei Lixin,et al.Preliminary Discussion of the Frequently Debris Flow Events in Sedongpu Basin at Gyalaperi Peak,Yarlung Zangbo River[J].Journal of Engineering Geology,2018,26(6):1 552-1 561(童立强,涂杰楠,裴丽鑫,等.雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J].工程地质学报,2018,26(6):1 552-1 561)
    [5] Yao Tandong,Qin Dahe,Shen Yongping,et al.Cryospheric Changes and Their Impacts on Regional Water Cycle and Ecological Conditions in the Qinghai-Tibetan Plateau[J].Chinese Journal of Nature,2013,35(3):179-186(姚檀栋,秦大河,沈永平,等.青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J].自然杂志,2013,35(3):179-186)
    [6] Du Jiankuo,He Yuanqing,Li Shuang,et al.Mass Balance of a Typical Monsoonal Temperate Glacier in Hengduan Mountains Region[J].Acta Geographica Sinica,2015,70(9):1 415-1 422(杜建括,何元庆,李双,等.横断山区典型海洋型冰川物质平衡研究[J].地理学报,2015,70(9):1 415-1 422)
    [7] Shi Yafeng,Liu Shiyin.Estimate of the Response of Glaciers in China to the Global Warming-up in the 21th Century[J].Chinese Science Bulletin,2000,45(4):434-438(施雅风,刘时银.中国冰川对21世纪全球变暖响应的预估[J].科学通报,2000,45(4):434-438)
    [8] Braithwaite R J,Zhang Y.Sensitivity of Mass Balance of Five Swiss Glaciers to Temperature Changes Assessed by Tuning a Degree-Day Model[J].Journal of Glaciology,2000,46(152):7-14
    [9] Su Zhen,Song Guoping,Cao Zhentang.Maritime Characteristics of Hailuogou Glacier in the Gongga Mountains[J].Journal of Glaciology and Geocryo-logy,1996,18(S1):51-59(苏珍,宋国平,曹真堂.贡嘎山海螺沟冰川的海洋性特征[J].冰川冻土,1996,18(S1):51-59)
    [10] Liu Qiao,Zhang Yong.Studies on the Dynamics of Monsoonal Temperate Glaciers in Mt.Gongga:A Review[J].Mountain Research,2017,35(5):717-726(刘巧,张勇.贡嘎山海洋型冰川监测与研究:历史,现状与展望[J].山地学报,2017,35(5):717-726)
    [11] Liu Shiyin,Yao Xiaojun,Guo Wanqin,et al.The Contemporary Glaciers in China Based on the Second Chinese Glacier Inventory[J].Acta Geographica Sinica,2015,70(1):3-16(刘时银,姚晓军,郭万钦,等.基于第二次冰川编目的中国冰川现状[J].地理学报,2015,70(1):3-16)
    [12] Dehecq A,Gourmelen N,Gardner A S,et al.Twenty-First Century Glacier Slowdown Driven by Mass Loss in High Mountain Asia[J].Nature Geoscience,2019,12(1):22,doi:10.1038/s41561-018-0271-9
    [13] Altena B,Scambos T,Fahnestock M,et al.Extracting Recent Short-Term Glacier Velocity Evolution Over Southern Alaska and the Yukon from a Large Collection of Landsat Data[J].The Cryosphere,2019,13(3):795-814
    [14] Scherler D,Leprince S,Strecker M R.Glacier-Surface Velocities in Alpine Terrain from Optical Satellite Imagery-Accuracy Improvement and Quality Assessment[J].Remote Sensing of Environment,2008,112(10):3 806-3 819
    [15] Dehecq A,Gourmelen N,Trouvé E.Deriving Large-Scale Glacier Velocities from a Complete Satellite Archive:Application to the Pamir-Karakoram-Himalaya[J].Remote Sensing of Environment,2015,162:55-66
    [16] Zhou Zhiwei,Yan Ziping,Liu Su,et al.Persistent Scatterers and Small Baseline SAR Interferometry for City Subsidence Mapping:A Case Study in Panjin,China[J].Geomatics and Information Science of Wuhan University,2011,36(8):928-931(周志伟,鄢子平,刘苏,等.永久散射体与短基线雷达干涉测量在城市地表形变中的应用[J].武汉大学学报·信息科学版,2011,36(8):928-931)
    [17] Franceschetti G,Lanari R.Synthetic Aperture Radar Processing[M].Boca Raton:CRC Press,2018
    [18] Zhou Chunxia,E Dongchen,Liao Mingsheng.Feasibility of InSAR Application to Antarctic Mapping[J].Geomatics and Information Science of Wuhan University,2004,29(7):619-623(周春霞,鄂栋臣,廖明生.InSAR用于南极测图的可行性研究[J].武汉大学学报·信息科学版,2004,29(7):619-623)
    [19] Deng Fanghui,Zhou Chunxia,Wang Zemin,et al.Ice-Flow Velocity Derivation of the Confluence Zone of the Amery Ice Shelf Using Offset-Tracking Method[J].Geomatics and Information Science of Wuhan University,2015,40(7):901-906(邓方慧,周春霞,王泽民,等.利用偏移量跟踪测定Amery冰架冰流汇合区的冰流速[J].武汉大学学报·信息科学版,2015,40(7):901-906)
    [20] Berthier E,Vadon H,Baratoux D,et al.Surface Motion of Mountain Glaciers Derived from Satellite Optical Imagery[J].Remote Sensing of Environment,2005,95(1):14-28
    [21] He Yuanqing,Zhang Zhonglin,Yao Tandong,et al.Modern Changes of the Climate and Glaciers in China’s Monsoonal Temperate Glacier Region[J].Acta Geographica Sinica,2003,58(4):550-558(何元庆,张忠林,姚檀栋,等.中国季风温冰川区近代气候变化与冰川动态[J].地理学报,2003,58(4):550-558)
    [22] Liu Qiao,Liu Shiyin,Zhang Yong,et al.Surface Ablation Features and Recent Variation of the Lower Ablation Area of the Hailuogou Glacier,Mt.Gongga[J].Journal of Glaciology and Geocryology,2011,33(2):227-236(刘巧,刘时银,张勇,等.贡嘎山海螺沟冰川消融区表面消融特征及其近期变化[J].冰川冻土,2011,33(2):227-236)
    [23] Liu Q,Liu S,Zhang Y,et al.Recent Shrinkage and Hydrological Response of Hailuogou Glacier,a Monsoon Temperate Glacier on the East Slope of Mount Gongga,China[J].Journal of Glaciology,2010,56(196):215-224
    [24] Li Zongxing,He Yuanqing,Jia Wenxiong,et al.Changes in Hailuogou Glacier During the Recent 100 Years Under Global Warming[J].Journal of Glaciology and Geocryology,2009,31(1):75-81(李宗省,何元庆,贾文雄,等.全球变暖背景下海螺沟冰川近百年的变化[J].冰川冻土,2009,31(1):75-81)
    [25] Liu Yunhua,Qu Chunyan,Shan Xinjian.Two-Dimensional Displacement Field of the Wenchuan Earthquake Inferred from SAR Intensity Offset-Tacking[J].Chinese Journal of Geophysics,2012,55(10):3 296-3 306(刘云华,屈春燕,单新建.基于SAR影像偏移量获取汶川地震二维形变场[J].地球物理学报,2012,55(10):3 296-3 306)
    [26] Shi X,Zhang L,Balz T,et al.Landslide Deformation Monitoring Using Point-Like Target Offset Tracking with Multi-mode High-Resolution TerraSAR-X Data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,105:128-140
    [27] Michel R,Avouac J P,Taboury J.Measuring Ground Displacements from SAR Amplitude Images:Application to the Landers Earthquake[J].Geophysical Research Letters,1999,26(7):875-878
    [28] Pathier E,Fielding E J,Wright T J,et al.Displacement Field and Slip Distribution of the 2005 Kashmir Earthquake from SAR Imagery[J].Geophysical Research Letters,2006,33(20):L20310
    [29] Fielding E J,Lundgren P R,Taymaz T,et al.Fault-Slip Source Models for the 2011 M 7.1 Van Earthquake in Turkey from SAR Interferometry,Pixel Offset Tracking,GPS,and Seismic Waveform Analysis[J].Seismological Research Letters,2013,84(4):579-593
    [30] Schellenberger T,Dunse T,K??b A,et al.Surface Speed and Frontal Ablation of Kronebreen and Kongsbreen,NW-Svalbard,from SAR Offset Tracking[J].The Cryosphere Discussions,2014,8(6):6 193-6 233
    [31] Chen Qiang,Luo Rong,Yang Yinghui,et al.Method and Accuracy of Extracting Surface Deformation Field from SAR Image Coregistration[J].Acta Geodaetica et Cartographica Sinica,2015,44(3):301-308(陈强,罗容,杨莹辉,等.利用SAR影像配准偏移量提取地表形变的方法与误差分析[J].测绘学报,2015,44(3):301-308)
    [32] Noferini L,Pieraccini M,Mecatti D,et al.Using GB-SAR Technique to Monitor Slow Moving Landslide[J].Engineering Geology,2007,95(3-4):88-98
    [33] Nolesini T,Di Traglia F,Del Ventisette C,et al.Deformations and Slope Instability on Stromboli Volcano:Integration of GBInSAR Data and Analog Modeling[J].Geomorphology,2013,180:242-254
    [34] Monserrat O,Crosetto M,Luzi G.A Review of Ground-Based SAR Interferometry for Deformation Measurement[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,93:40-48
    [35] Yigit E,Demirci S,Unal A,et al.Millimeter-Wave Ground-Based Synthetic Aperture Radar Imaging for Foreign Object Debris Detection:Experimental Studies at Short Ranges[J].Journal of Infrared,Millimeter,and Terahertz Waves,2012,33(12):1 227-1 238
    [36] Noferini L,Mecatti D,Macaluso G,et al.Monitoring of Belvedere Glacier Using a Wide Angle GB-SAR Interferometer[J].Journal of Applied Geophysics,2009,68(2):289-293
    [37] Luzi G,Pieraccini M,Mecatti D,et al.Monitoring of an Alpine Glacier by Means of Ground-Based SAR Interferometry[J].IEEE Geoscience and Remote Sensing Letters,2007,4(3):495-499

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700