用户名: 密码: 验证码:
深海自持式智能浮标双闭环模糊PID定深控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dual Closed-loop Fuzzy PID Depth Control for Deep-sea Self-holding Intelligent Buoy
  • 作者:张惠琳 ; 李醒飞 ; 杨少波 ; 徐佳毅 ; 李洪宇 ; 王强
  • 英文作者:ZHANG Huilin;LI Xingfei;YANG Shaobo;XU Jiayi;LI Hongyu;WANG Qiang;State Key Laboratory of Precision Measurement Technology and Instruments,Tianjin University;Pilot National Laboratory for Marine Science and Technology(Qingdao);Qingdao Institute for Marine Technology of Tianjin University;School of Mechanical and Electronic Engineering,Shandong University of Science and Technology;
  • 关键词:深海自持式智能浮标 ; 定深控制 ; 双闭环 ; 模糊PID控制
  • 英文关键词:deep-sea self-holding intelligent buoy;;depth control;;dual closed-loop;;fuzzy PID control
  • 中文刊名:XXYK
  • 英文刊名:Information and Control
  • 机构:天津大学精密测试技术及仪器国家重点实验室;青岛海洋科学与技术试点国家实验室;天津大学青岛海洋技术研究院;山东科技大学机械电子工程学院;
  • 出版日期:2019-04-15
  • 出版单位:信息与控制
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金资助项目(61503283);; 青岛海洋科学与技术国家实验室问海计划项目(ZR2016WH01);; 海洋高端装备配套技术及装备产业创新孵化基地子任务(BHSF2017-27);; 天津市自然科学基金资助项目(重点项目)(16JCZDJC30100)
  • 语种:中文;
  • 页:XXYK201902011
  • 页数:8
  • CN:02
  • ISSN:21-1138/TP
  • 分类号:78-84+92
摘要
针对深海自持式智能浮标运动模型非线性、强耦合性的特点,提出了一种基于双闭环反馈回路的模糊比例—积分—微分(proportion-integral-derivative, PID)定深控制器.根据浮标的浮力调节机构,分析了浮标的运动过程,建立了非线性运动方程.针对外环深度反馈回路,设计了模糊控制器.基于内环速度反馈回路与模糊控制器,设计了联级模糊PID定深控制器.传统PID定深控制器超调量5.6%,最终在目标深度±30 m范围内震荡,而双闭环模糊PID定深控制器在相同的上升时间内,超调量2.0%,深度误差控制在1.0%以内.存在外界扰动的情况下,通过双闭环模糊PID定深控制器的调节,浮标仍可以稳定在目标深度内.仿真结果表明,所建立的双闭环模糊PID定深控制系统具有良好的控制效果和稳定性.
        Considering the nonlinear and strong coupling characteristics of the motion model of a deep-sea self-holding intelligent buoy,we propose a fuzzy proportion-integral-derivative(PID) controller based on a dual closed-loop to control the buoy's depth.According to the buoyancy regulation system,we establish a nonlinear dynamic model based on the motion analysis of the buoy.We design a fuzzy controller for the outer deep feedback loop,and then we design a cascade fuzzy PID controller for deep-sea self-holding profile buoy according to the inner speed feedback loop and the fuzzy controller.The overshoot of the traditional PID depth controller is 5.6%,and it will eventually oscillate within a depth of ± 30 meters.Compared with traditional PID depth controllers,within the same rise time,the overshoot of the fuzzy PID controller is 2.0%,and the depth error is within 1.0%.In the presence of external disturbances,the buoy can still be stabilized within the target depth by adjusting the dual closed-loop fuzzy PID depth controller.Simulation results demonstrate that the dual closed-loop fuzzy PID depth controller has better depth control ability and stability.
引文
[1] 陈鹿,潘彬彬,曹正良,等.自动剖面浮标研究现状及展望[J].海洋技术学报,2017,36(2):1-9.Chen L,Pan B B,Cao Z L,et al.Research status and prospects of automatic profiling floats[J].Journal of Ocean Technology,2017,36(2):1-9.
    [2] 许建平,刘增宏,孙朝辉,等.全球Argo实时海洋观测网全面建成[J].海洋技术学报,2008,27(1):68-70.Xu J P,Liu Z H,Sun C H,et al.Entire achievement of global Argo real-time ocean observing network[J].Ocean Technology,2008,27(1):68-70.
    [3] Neila M B R,Tarak D,et al.Adaptive terminal sliding mode control for rigid robotic manipulators[J].International Journal of Automation and Computing,2011,8(2):215-220.
    [4] Chu Z,Xiang X,Zhu D,et al.Adaptive fuzzy sliding mode diving control for autonomous underwater vehicle with input constraint[J].International Journal of Fuzzy Systems,2017(8):1-10.
    [5] Kim D,Choi H S,Kim J Y,et al.Trajectory generation and sliding-mode controller design of an underwater vehicle-manipulator system with redundancy[J].International Journal of Precision Engineering & Manufacturing,2015,16(7):1561-1570.
    [6] Jiang C,Wan L,Sun Y.Design of novel S-plane controller of autonomous underwater vehicle established on sliding mode control[J].Journal of Harbin Institute of Technology,2017,24(2):58-64.
    [7] Joe H,Kim M,Yu S C.Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances[J].Nonlinear Dynamics,2014,78(1):183-196.
    [8] Lakhekar G V,Waghmare L M.Robust maneuvering of autonomous underwater vehicle:An adaptive fuzzy PI sliding mode control[J].Intelligent Service Robotics,2017,10(3):1-18.
    [9] 杨建华,田守业.基于滑模理论的水下机器人定深控制算法研究[J].计算机测量与控制,2017,25(8):43-45.Yang J H,Tian S Y.Research on depth control algorithm of underwater vehicle based on theory of sliding mode[J].Computer Measurement & Control,2017,25(8):43-45.
    [10] Hassanein O,Anavatti S G,Ray T.Fuzzy modeling and control for autonomous underwater vehicle[C]//International Conference on Automation,Robotics and Applications.Piscataway,NJ,USA:IEEE,2012:169-174.
    [11] Khodayari M H,Balochian S.Modeling and control of autonomous underwater vehicle (AUV)in heading and depth attitude via self-adaptive fuzzy PID controller[J].Journal of Marine Science & Technology,2015,20(3):559-578.
    [12] Gona L J,Gom R S,Batlle C,et al.Fuzzy controller for the yaw and velocity control of the Guanay II AUV[J].IFAC-Papers,2015,48(2):268-273.
    [13] Isa K,Arshad M R.Modeling and motion control of a hybrid-driven underwater glider[J].Indian Journal of Geo-Marine Sciences,2013,42(8):971-979.
    [14] 冯剑,张文安,倪洪杰,等.轮式移动机器人轨迹跟踪的PID控制方法[J].信息与控制,2017,46(4):385-393.Feng J,Zhang W A,Ni H J,et al.Trajectory tracking control of wheeled mobile robots using PID control method[J].Information and Control,2017,46(4):385-393.
    [15] 孙庆刚,郑荣,安家玉,等.基于浮力调节系统的AUV定深悬浮控制[J].海洋技术学报,2017,36(6):33-37.Sun Q G,Zheng R,An J Y,et al.Study on the AUV depth and hovering control based on variable buoyancy system[J].Journal of Ocean Technology,2017,36(6):33-37.
    [16] Karasakal O,Guzelkaya M,Eksin I,et al.Online tuning of fuzzy PID controllers via rule weighing based on normalized acceleration[J].Engineering Applications of Artificial Intelligence,2013,26(1):184-197.
    [17] 田宇,张艾群,李伟.基于混合模糊P+ID控制的欠驱动AUV路径跟踪控制及仿真[J].系统仿真学报,2012,24(5):1016-1020,1025.Tian Y,Zhang A Q,Li W.Path-following control and simulation of underactuated autonomous underwater vehicles based on fuzzy P plus ID control[J].Journal of System Simulation,2012,24(5):1016-1020,1025.
    [18] 王志强,栾小丽,刘飞.多变量非方系统多环PI控制器设计[J].信息与控制,2016,45(5):556-562.Wang Z Q,Luan X L,Liu F.Multi-loop PI controller design for multivariable non-square system[J].Information and Control,2016,45(5):556-562.
    [19] Hammad M M,Elshenawy A K,Singaby M I E.Trajectory following and stabilization control of fully actuated AUV using inverse kinematics and self-tuning fuzzy PID[J].Plos One,2017,12(7):e0179611.
    [20] Barker L.Closed-loop buoyancy control for a coastal profiling float[R].Santa Clara,CA,USA:Santa Clara University,2014.
    [21] 张泾周,杨伟静,张安祥.模糊自适应PID控制的研究及应用仿真[J].计算机仿真,2009,26(9):132-135,163.Zhang J Z,Yang W J,Zhang A X.Research on fuzzy self-adaptive PID control and it′s emulation[J].Computer Simulation,2009,26(9):132-135,163.
    [22] 刘金琨.智能控制[M].第3版.北京:电子工业出版社,2014:51-106.Liu J K.Intelligent control[M].3rd ed.Beijing:Electronic Industry Press,2014:51-106.
    [23] 杨航,刘凌,阎治安,等.双闭环Buck变换器系统模糊PID控制[J].西安交通大学学报,2016,50(4):35-40.Yang H,Liu L,Yan Z A,et al.A fuzzy PID control strategy for buck converter system of double closed loop circuits[J].Journal of Xi′an Jiao Tong University,2016,50(4):35-40.
    [24] 胡寿松.自动控制原理[M].第6版.北京:科学出版社,2013:222-236.Hu S S.The principle of automatic control[M].6th ed.Beijing:Science Press,2013:222-236.
    [25] 张德丰.MATLAB模糊系统设计[M].北京:国防工业出版社,2009:38-183.Zhang D F.Design of MATLAB fuzzy system[M].Beijing:National Defense Industry Press,2009:38-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700