用户名: 密码: 验证码:
激光打孔脱细胞基质复合骨髓间充质干细胞构建组织工程气管软骨
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Laser Drilling Decellularized Trachea Matrix Combined with Bone Marrow Mesenchymal Stem Cells for Constructing Tissue-Engineered Tracheal Cartilage
  • 作者:徐勇 ; 刘春燕 ; 刘延群 ; 李亚强 ; 段亮 ; 姜格宁
  • 英文作者:XU Yong;LIU Chunyan;LIU Yanqun;LI Yaqiang;DUAN Liang;JIANG Gening;Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine;Department of Plastic and Reconstructive Surgery,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine;Department of Cardiology, The Fourth Hospital of Jinan;
  • 关键词:激光打孔 ; 脱细胞基质 ; 骨髓间充质干细胞 ; 软骨再生 ; 组织工程气管
  • 英文关键词:Laser drilling;;Decellularized matrix;;Bone marrow mesenchymal stem cells;;Cartilage regeneration;;Tissue-engineered trachea
  • 中文刊名:ZZCW
  • 英文刊名:Journal of Tissue Engineering and Reconstructive Surgery
  • 机构:上海市肺科医院胸外科;上海交通大学医学院附属第九人民医院整复外科上海市组织工程研究重点实验室;济南市第四人民医院心内科;
  • 出版日期:2019-04-15
  • 出版单位:组织工程与重建外科杂志
  • 年:2019
  • 期:v.15
  • 基金:国家自然科学基金项目(81570089,81270070)
  • 语种:中文;
  • 页:ZZCW201902003
  • 页数:5
  • CN:02
  • ISSN:31-1946/R
  • 分类号:15-19
摘要
目的探索激光打孔脱细胞基质诱导骨髓间充质干细胞(BMSCs)于动物体内构建组织工程气管软骨的可行性。方法应用激光打孔联合脱细胞技术制备激光打孔脱细胞基质(LDTM)作为支架材料。抽取兔骨髓,分离培养BMSCs,接种于LDTM支架后植入兔皮下。体内培养12周后,行大体观察、组织学检测、生物力学及生物化学定量检测。结果细胞均匀分布在激光微孔和支架表面,并且该复合物能够较好地维持原始的管状结构,形成了富有弹性的瓷白色软骨样组织。HE染色可见典型的软骨陷窝出现,说明成熟软骨组织形成。Safranin-O染色证实有蛋白聚糖基质产生。生物力学和生物化学检测显示新生气管组织均接近正常气管组织。结论 LDTM可以促进软骨再生并在动物体内诱导BMSCs构建组织工程气管软骨。
        Objective To explore the feasibility of laser drilling decellularized trachea matrix(LDTM) inducing bone marrow mesenchymal stem cells(BMSCs) for constructing tissue-engineered tracheal cartilage in rabbits. Methods LDTM was fabricated by laser drilling and decellularization technique. BMSCs were harvested from bone marrow of rabbits and cultured in vitro. After the expanded cells were seeded onto the scaffolds, the cell-scaffold constructs were implanted into the subcutaneous of rabbits. Gross observation, histological observation and quantitative evaluation of neocartilage test were carried out after cultured for 12 weeks in vivo. Results The cells were evenly distributed into micropores and surface of the scaffold, and the construct maintained the original tubular structure with a flexible white cartilage-like tissue. HE staining showed typical mature lacuna, suggesting the formation of mature cartilage tissue. Safranin-O staining showed abundant proteoglycan. Biomechanical and biochemistry analyses indicated that neocartilage was close to or even better than native trachea cartilage. Conclusion LDTM promote cartilage regeneration and can induce BMSCs to construct tissue-engineered tracheal cartilage in rabbits.
引文
[1]Vacanti C A,Paige KT,Kim WS,et al.Experimental tracheal replacement using tissue-engineered cartilage[J].J Pediatr Surg,1994,29(2):201-204.
    [2]Tavassoli A,Matin MM,Niaki MA,et al.Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold[J].Iran J Basic Med Sci,2015,18(12):1221-1227.
    [3]Yang Q,Peng J,Guo Q,et al.A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells[J].Biomaterials,2008,29(15):2378-2387.
    [4]Huang Z,Godkin O,Schulze-Tanzil G.The challenge in using mesenchymal stromal cells for recellularization of decellularized cartilage[J].Stem Cell Rev,2017,13(1):50-67.
    [5]Conconi MT,De Coppi P,Di Liddo R,et al.Tracheal matrices,obtained by a detergent-enzymatic method,support in vitro the adhesion of chondrocytes and tracheal epithelial cells[J].Transpl Int,2005,18(6):727-734.
    [6]Remlinger NT,Czajka CA,Juhas ME,et al.Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction[J].Biomaterials,2010,31(13):3520-3526.
    [7]Gong YY,Xue JX,Zhang WJ,et al.A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes[J].Biomaterials,2011,32(9):2265-2273.
    [8]Yan D,Zhou G,Zhou X,et al.The impact of low levels of collagen IX and pyridinoline on the mechanical properties of in vitro engineered cartilage[J].Biomaterials,2009,30(5):814-821.
    [9]Zhou G,Liu W,Cui L,et al.Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells[J].Tissue Eng,2006,12(11):3209-3221.
    [10]Reddy GK,Enwemeka CS.A simplified method for the analysis of hydroxyproline in biological tissues[J].Clin Biochem,1996,29(3):225-229.
    [11]吕大娟,童杏林,李磊,等.激光加工组织工程生物材料研究进展[J].激光杂志,2009,30(4):7-9.
    [12]李尚滨,于庆平,张文浩,等.同种异体气管软骨脱细胞基质构建组织工程化气管的初步研究[J].中华损伤与修复杂志(电子版),2009,4(6):643-650.
    [13]Jungebluth P,Go T,Asnaghi A,et al.Structural and morphologic evaluation of a novel detergent-enzymatic tissue-engineered tracheal tubular matrix[J].J Thorac Cardiovasc Surg,2009,138(3):586-593.
    [14]Badylak SF,Weiss DJ,Caplan A,et al.Engineered whole organs and complex tissues[J].Lancet,2012,379(9819):943-52.
    [15]Uebersax L,Merkle HP,Meinel L.Insulin-like growth factor Ireleasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells[J].J Control Release,2008,127(1):12-21.
    [16]Wang L,Detamore MS.Insulin-like growth factor-I improves chondrogenesis of predifferentiated human umbilical cord mesenchymal stromal cells[J].J Orthop Res,2009,27(8):1109-1115.
    [17]Indrawattana N,Chen G,Tadokoro M,et al.Growth factor combination for chondrogenic induction from human mesenchymal stem cell[J].Biochem Biophys Res Commun,2004,320(3):914-919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700