用户名: 密码: 验证码:
多效唑和三碘苯甲酸对大叶黄杨根系和叶片氮积累的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Both PP333 and TIBA affect nitrogen accumulation in roots and leaves of Buxus megistophylla
  • 作者:韩丛蔚 ; 徐程扬
  • 英文作者:HAN Cong-wei;XU Cheng-yang;Key Laboratory for Forest Silviculture and Conservation of Ministry of Education/Key Laboratory for Silviculture and Forest Ecosystem in Arid and Semi-arid Areas of State Forestry Administration/Beijing Forestry University;
  • 关键词:大叶黄杨 ; PP333 ; TIBA ; 氮代谢
  • 英文关键词:Buxus megistophylla;;PP333;;TIBA;;nitrogen metabolism
  • 中文刊名:ZWYF
  • 英文刊名:Journal of Plant Nutrition and Fertilizers
  • 机构:国家重点森林培育和植物保护实验室/半干旱与干旱重点实验室/北京林业大学;
  • 出版日期:2019-02-25
  • 出版单位:植物营养与肥料学报
  • 年:2019
  • 期:v.25;No.125
  • 基金:北京市教委科学研究与研究生培养共建项目(200-670096)资助
  • 语种:中文;
  • 页:ZWYF201902017
  • 页数:9
  • CN:02
  • ISSN:11-3996/S
  • 分类号:166-174
摘要
【目的】多效唑(PP333)和三碘苯甲酸(TIBA)是植物生长延缓剂,因其对植株矮化的显著效果,广泛应用于绿篱植物的化学修剪中,本研究使用此两种激素对苗木进行叶面喷施,探讨其对大叶黄杨根系和叶片氮代谢的影响。【方法】以三年生扦插大叶黄杨(Buxus megistophylla)苗为试验材料,在北京林业大学实验林场苗圃地内进行了叶面喷施田间试验。采用双因素随机区组设计,设置PP333 0、20、50、80 mg/L四个浓度水平,TIBA为0、50、100 mg/L三个浓度水平,共12个处理组合。自2017年4月5日起,每隔25天在每个小区喷施1 L备好的溶液。第三次喷施25天后取扦插苗全株样,分别测定了根系、叶片全氮、硝态氮、游离氨基酸含量以及叶片可溶性蛋白和光合色素含量。【结果】1)单施高浓度PP333对细、中根全氮、硝态氮和游离氨基酸含量有显著提升作用,而单施TIBA仅对细根全氮、硝态氮和游离氨基酸含量有显著影响。PP333和TIBA及二者的交互效应对大叶黄杨细根的全氮、硝态氮和游离氨基酸含量均有极显著提升作用。2) PP333、TIBA及其交互作用均能极显著促进叶片全氮、可溶性蛋白含量和光合色素含量提升,50或80 mg/L PP333能够促进游离氨基酸含量提升,且仅在80 mg/L时对硝态氮含量有显著影响。3) PP333对不同径级根系全氮、游离氨基酸、硝态氮以及叶片全氮、硝态氮、游离氨基酸、可溶性蛋白和光合色素含量的促进作用较TIBA更为显著。【结论】PP333和TIBA对大叶黄杨氮代谢有显著影响,且相对于TIBA, PP333更能影响大叶黄杨氮的生理代谢过程。在生产应用中,80 mg/L PP333与100 mg/L TIBA结合喷施会加速根系中细根的氮代谢过程,并对叶片中蛋白质和光合色素的提升有显著促进作用,单施80 mg/L PP333显著促进叶片硝态氮和游离氨基酸的含量。
        【Objectives】Two plant growth retardants, PP333 and TIBA, have been widely applied in chemical pruning of hedge plants because of having dwarfing effects on plants growth. In this study, both PP333 and TIBA were applied by spraying seedlings foliage to probe the responses of nitrogen accumulation in roots and leaves of the hedge plants.【Methods】A field experiment with a two-factor completely randomized design was conducted by foliar spraying the detacthment seedlings of Buxus megistophylla(3-year old). The applied concentrations of PP333 were composed of 4 levels: 0, 20, 50 and 80 mg/L, and TIBA application included 3 levels: 0, 50 and 100 mg/L. In detail, a total of 1 L of prepared solution was sprayed into each experimental plot in an interval of 25 days from 5 April, 2017. Twenty-five days after the third spraying, the whole seedlings of Buxus megistophylla from each plot were sampled to measure the total-N, free amino acid, nitrate-N in roots and leaves, and the soluble protein and photosynthetic pigment contents in leaves were determined.【Results】1) Spraying PP333 significantly promoted the contents of total-N, nitrate-N and free amino acid in radicula and medium roots and TIBA application with high concentration obviously affected the contents of total-N content, nitrate-N and free amino acid in radicula. The interactions between the PP333 and TIBA significantly promoted the accumulations of total-N content, nitrate-N and free amino acid in radicula of the seedlings of B. megistophylla treated. 2) PP333,TIBA and their interactions dramatically increased the total-N, soluble protein and photosynthetic pigment content in leaves too, the content of free amino acids was improved by PP333 of 50 or 80 mg/L, and that of nitrate-N was improved by PP333 of 80 mg/L. 3) Compared with the TIBA treatment, the PP333 application significantly affected the nitrogen accumulation in B. megistophylla.【Conclusions】The nitrogen metabolic accumulation in B. megistophylla is regulated by PPP333, TIBA and their interactions. Compared with TIBA, PP333 could affect the metabolic process of nitrogen in B. megistophylla. In landscape maintenance, the nitrogen metabolic process in radicula and the contents of protein and photosynthetic pigments were improved dramatically by spraying both PP333 of 80 mg/L and TIBA of 100 mg/L. Spraying PP333 of 80 mg/L alone promoted the contents of nitrate-N and free amino acid.
引文
[1] Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation:mechanisms, implications,and nitrogen, phosphorus interactions[J]. Ecological Applications, 2010, 20(1):5-15.
    [2] Ruan J, Haerdter R, Gerendds J. Impact of nitrogen supply on carbon/nitrogen allocation:a case study on amino acids and catechins in green tea Camellia sinensis(L.)O. Kuntze plants[J]. Plant Biology, 2010, 12(5):724-734.
    [3]张淑英,褚贵新,梁永超.增铵营养对低温胁迫下棉花幼苗氮代谢的影响[J].植物营养与肥料学报,2017, 23(4):983-990.Zhang S Y, Chu G X, Liang Y C. Effects of enhancing ammonium nutrition on the nitrogenous metabolisms of cotton seedlings grown hydroponically under low-temperature stress[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4):983-990.
    [4] Naidu J H, Ashok P, Sekhar R C, et al. Effect of plant growth retardants and spacings on vegetative growth and flower yield of African marigold(Tagetes erecta L)cv Pusa Narangi Gainda[J].International Journal of Farm Sciences, 2014, 4(2):92-99.
    [5] Matsoukis A S, Tsiros I, Kamoutsis A. Leaf area response of Lantana camara L. subsp. camara to plant growth regulators under different photosynthetic flux conditions[J]. Hortscience, 2004, 39(5):1042-1044.
    [6] Tato A A, Laubscher C P, Ndakidemi P A, et al. Paclobutrazol retards vegetative growth in hydroponically-cultured Leonotis leonurus,(L.)R. Br. Lamiaceae, for a multipurpose flowering potted plant[J]. South African Journal of Botany, 2016, 106(5):67-70.
    [7] Zhang L, Yan P, Shen C, et al. Effects of exogenous TIBA on dwarfing, shoot branching and yield of tea plant(Camellia sinensis L.)[J]. Scientia Horticulturae, 2017, 225(4):676-680.
    [8] Tantasawat P A, Somtip A, Pornbungkerd P. Effects of exogenous application of plant growth regulators on growth, yield, and in vitro gynogenesis in cucumber[J]. Hortscience, 2015, 50(3):374-382.
    [9] Chursi O, Kozai N, Ogatat, et al. Application of paclobutrazol for flowering and fruit production of'Irwin'mango(Mangifera indica L.)in Okinawa[J]. International Journal of Life Cycle Assessment,2009, 12(2):103-108.
    [10] Wilhem R, Hansjorg F, Graebe J E, et al. Tetcyclacis and triazole type plant growth retardants:Their influence on the biosynthesis of gibberellins and other metabolic processes[J]. Pest Management Science,2010, 21(4):241-252.
    [11] Zhang S, Zhang D, Fan S, et al. Effect of exogenous GA3 and its inhibitor paclobutrazol on floral formation, endogenous hormones,and flowering-associated genes in'Fuji'apple(Malus domestica Borkh.)[J]. Plant Physiology&Biochemistry, 2016, 107(6):178-186.
    [12]郑冬超,夏新莉,尹伟伦.生长素促进拟南芥AtNRT1.基因表达增强硝酸盐吸收[J].北京林业大学学报,2013, 35(2):80-85.Zheng D C, Xia X L, Yin W L. Auxin promotes nitrate uptake by upregulating AtNRT1.1 gene transcript level in Arobidopsis thaliana[J].Journal of Beijing Forestry University, 2013, 35(2):80-85.
    [13] Meng C F, Jiang P K, Cao Z H, et al. Effects of boron and paclobutrazol on growth, fruit set, nutrient uptake, and alternate bearing of Muye red bayberry[J]. Communications in Soil Science&Plant Analysis, 2012, 43(16):2114-2125.
    [14] Brar J S. Effect of paclobutrazol and ethephon on leaf nutrient uptakein'Allahabad Safeda'guava(Psidium guajava L.)plants[J]. Indian Journal of Plant Physiology, 2010, 15(3):259-261.
    [15] Wang Y C, Meng Y, Wan-Rong G U, et al. Effects of mixed compound of DCPTA and CCC on root growth and stem agronomic traits of spring maize in cold area[J]. Acta Agriculture Boreali Sinica,2014, 29(2):156-160.
    [16] Korturs C. Effect of paclobutrazol on root activity of mango(Mangifera indica)[J]. Indian Journal of Agricultural Science, 2011,76(3):143-144.
    [17]刘蕾,杨志丽,陈丽梅.烟草GA3合成调控转录因子RSG应答甲醇和乙醇刺激的分子机理初探[J].西北植物学报,2014, 34(5):943-949.Liu L, Yang Z L, Chen L M. GA Synthesis-regulated transcription factor RSG in response to methanol and ethanol stimulation in tobacco[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(5):943-949.
    [18] Zhu X, Min C, Yang L, et al. Global transcriptome profiling analysis of inhibitory effects of paclobutrazol on leaf growth in lily(Lilium Longiflorum-Asiatic Hybrid)[J]. Frontiers in Plant Science,2016,7(4):1-14.
    [19]李金航,齐秀慧,徐程扬,等.华北4产地黄栌幼苗根系形态对干旱胁迫的短期响应[J].北京林业大学学报,2014, 36(1):48-54.Li J H, Qi X H, Xu C Y, et al. Short-term responses of root morphology to drought stress of Cotinus coggygria seedlings from four varied locations in northern China[J]. Journal of Beijing Forestry University, 2014, 36(1):48-54.
    [20]姚雄,任万军,蓝平,等.氮肥与多效唑配合对稻麦两熟区机插水稻秧苗生长的影响[J].植物营养与肥料学报,2009, 15(6):1364-1371.Yao X, Ren W J, Lan P, et al. Effects of nitrogenous fertilizer and PP333 on the seedling growth of mechanical transplanting rice in wheat-rice double cropping area[J]. Journal of Plant Nutrition and Fertilizer,2009, 15(6):1364-1371.
    [21]刘洗.多效唑和赤霉素对鹅掌柴等五种水培花卉调控效果的研究[D].广州:华南农业大学硕士学位论文,2011.Liu X. The study on regulating effects of PP333 and GA3 on 5 kinds of hydroponics flower including Schefflera octophylla[D].Guangzhou:Thesis of Huanan Agricultural University, 2011.
    [22] Pacurar D I, Pacurar M L, Bussell J D, et al. Identification of new adventitious rooting mutants among suppressors of the Arabidopsis thaliana superroot2 mutation[J]. Journal of Experimental Botany,2014, 65(6):1605-1618.
    [23]李涛,曹翠玲,田霄鸿,等.低磷胁迫下熊猫豆侧根增多的生理机制研究[J].植物营养与肥料学报,2013, 19(4):926-933.Li T, Cao C L, Tian X H, et al. Physiological mechansim of increasing lateral roots of Phaseolus coccineus L. under P deficiency[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(4):926-933.
    [24] Lu S N, Che W G, Zhou Y F, et al. Inhibition of SbABI5 expression in roots by ultra-high endogenous ABA accumulation results in sorghum sensitivity to salt stress[J]. International Journal of Agriculture&Biology, 2016, 18(1):146-154.
    [25] Xu Q, Huang B. Seasonal changes in root metabolic activity and nitrogen uptake for two cultivars of creeping bentgrass[J].Hortscience,2006, 41(3):822-826.
    [26]孙敏红,卢晓鹏,曹雄军,等.不同氮素形态对枳橙幼苗根系生长及氮素吸收动力学特性的影响[J].林业科学,2015, 51(12):113-120.Sun M H, Lu X P, Cao X J, et al. Effect of different nitrogen forms on root growth and dynamic kinetics characteristics for Citrus sinensis×Poncirus trifoliata[J]. Scientia Silvae Sinicae, 2015, 51(12):113-120.
    [27]姜琳琳,韩立思,韩晓日,等.氮素对玉米幼苗生长、根系形态及氮素吸收利用效率的影响[J].植物营养与肥料学报,2011,17(1):247-253.Jiang L L, Han L S, Han X R, et al. Effects of nitrogen on growth,root morphological traits, nitrogen uptake and utilization efficiency of maize seedlings[J]. Plant Nutrition and Fertilizer Science, 2011,17(1):247-253.
    [28] Funk J L,Glenwinkel L A, Sack L. Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species[J]. PLoS ONE, 2013, 8(5):e64502.
    [29]张红娜,苏钻贤,陈厚彬.GA3和PP333对妃子笑荔枝成花及叶片碳氮营养积累的影响[J].南方农业学报,2016, 47(12):2098-2102.Zhang H N, Su Z X, Chen H B. Effects of GA3 and PP333 on flower formation carbon and nitrogen accumulation in leaves of litchi Feizixiao[J]. Journal of Southern Agriculture, 2016, 47(12):2098-2102.
    [30]王丽特,徐照丽,杨利云,等.4种化学调控剂对烟草幼苗耐冷性及其光合特性的效应研究[J].西北植物学报,2015, 35(4):801-808.Wang L T, Xu Z L, Yang L Y, et al. Effects of four chemical regulators on chilling tolerance and photosynthetic characteristics of tobacco seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica,2015,35(4):801-808.
    [31] Tanis S R, Mccullough D G, Cregg B M. Effects of paclobutrazol and fertilizer on the physiology, growth and biomass allocation of three Fraxinus species[J]. Urban Forestry&Urban Greening, 2015, 14(6):590-598.
    [32] Huett D O, George A P, Slack J M, et al. Diagnostic leaf nutrient standard for low-chill peaches in subtropical Australia[J]. Australia Journal of Experimental Agriculture, 1997,37(1):119-126.
    [33]郑涛,潘东明.漳州水仙矮化机理研究[J].南方农业学报,2012,43(3):302-305.Zheng T, Pan D M. Dwarfing mechanism of Narcissus tazetta L. var.chinensis Roem treated with PP333[J]. Journal of Southern Agriculture, 2012, 43(3):302-305.
    [34] Cao C L, Xiao H U, Song W X, et al. Studies on the mechanism of B9 and PP333 increasing drought resistance of Poa annua[J].Pratacultural Science, 2004, 21(10):78-82.
    [35] Hunk C, Liu K K, Shiah F K, et al. The effects of light and nitrate levels on the relationship between nitrate reductase activity and15NO3-uptake:field observations in the East China Sea[J].Limnology&Oceanography, 2000, 45(4):836-848.
    [36] Leran S, Varala K, Boyer J C, et al. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants[J]. Trends in Plant Science, 2014, 19(1):5-9.
    [37]孟潇.两种生长延缓剂对主十结果形核桃生长及果实的影响[D].新疆阿拉尔市:塔里木大学硕士学位论文,2017.Meng X. Effects of the two plant growth retardants on the growth and fruit of Juglans regia L[D]. Alaer, Xinjiang:MS Thesis of TarimuUniversity, 2017.
    [38]杨丽芝,潘春霞,邵珊璐,等.多效唑和干旱胁迫对毛竹实生苗活力、光合能力及非结构性碳水化合物的影响[J].生态学报,2018,38(6):1-10.Yang L Z, Pan C X, Shao S L, et al. Effects of paclobutrazol and drought stress on the activity, photosynthetic characteristics and nonstructural carbohydrates of Phyllostachys edulis seedlings[J]. Acta Ecologica Sinica, 2018, 38(6):1-10.
    [39]余凯凯,宋喜娥,高虹,等.不同施肥水平下多效唑对马铃薯光合及叶绿素荧光参数的影响[J].核农学报,2016, 30(1):154-163.Yu K K, Song X E, Gao H, et al. Effects of paclobutrazol on photosynthesis and chlorophyll fluorescence parameters of potato under different fertilization levels[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(1):154-163.
    [40] Dong Q, Wang J, Pang M, et al. Effects of growth regulators on photosynthetic and physiological indices and chlorophyll fluorescence parameters of Pistacia chinensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(3):484-490.
    [41]刘梅,吴广俊,路笃旭,等.不同年代玉米品种氮素利用效率与其根系特征的关系[J].植物营养与肥料学报,2017, 23(1):71-82.Liu M, Wu G J, Lu D X et al. Improvement of nitrogen use efficiency and the relationship with root system characters of maize cultivars in different years[J]. Journal of Plant Nutrition and Fertilizer, 2017,23(1):71-82.
    [42]胡凤琴,牟溥.植物吸收根的增殖和生长与养分变异的关系一臭椿、翠菊、加拿大一枝黄花分根实验的启示[J].植物生态学报,2013, 37(2):93-103.Hu F Q, Mou B. Proliferation and growth of plant fine roots and the influences from nutrient variation-Implications from the split-root experiments of Ailanthus altissima, Callistephus chinensis and Solidago canadensis[J]. Chinese Journal of Plant Ecology, 2013,37(2):93-103.
    [43]尹飞,王俊忠,孙笑梅,等.夏玉米根系与土壤硝态氮空间分布吻合度对水氮处理的响应[J].中国农业科学,2017, 50(11):2166-2178.Yin F, Wang J Z, Sun X M, et al. Response of spatial concordance index between maize root and soil nitrate distribution to water and nitrogen treatments[J]. Scientia Agricultura Sinica, 2017, 50(11):2166-2178.
    [44]史作民,唐敬超,程瑞梅,等.植物叶片氮分配及其影响因子研究进展[J].生态学报,2015, 35(18):5909-5919.Shi Z M, Tang J C, Cheng R M, et al.A review of nitrogen allocation in leaves and factors in its effects[J]. Acta Ecologica Sinica, 2015,35(18):5909-5919.
    [45] Liu J, Song L I, Tan F, et al. Effects of seed soaking with paclobutrazol on tillering and physiological characteristics of sugarcane seedlings[J]. Asian Agricultural Research, 2017, 8(1):34-38.
    [46] Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves,stems and roots:meta-analyses of inter-specific variation and environmental control[J]. New Phytologist, 2012, 193(1):30-50.
    [47] Potter J R. Triiodobenzoic acid as a direct inhibitor of root initiation in adventitious root formation in leafy pea cuttings[J]. Plant Physiology, 1990, 93(supp.):73,420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700