用户名: 密码: 验证码:
基于自校正PID控制的智能悬臂梁振动控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Vibration Control of Smart Cantilever Beams based on Self-tuning PID Control
  • 作者:胡晓琳 ; 张婷
  • 英文作者:HU Xiaolin;ZHANG Ting;Automotive Engineering College, Shanghai University of Engineering Science;
  • 关键词:振动与波 ; 系统辨识 ; 压电双晶片 ; 自校正PID控制 ; 智能悬臂梁 ; 振动控制
  • 英文关键词:vibration and wave;;system identification;;piezoelectric bimorph;;self-tuning PID control;;smart cantilever beam;;vibration control
  • 中文刊名:ZSZK
  • 英文刊名:Noise and Vibration Control
  • 机构:上海工程技术大学机械与汽车工程学院;
  • 出版日期:2019-04-18
  • 出版单位:噪声与振动控制
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金资助项目(11702168)
  • 语种:中文;
  • 页:ZSZK201902005
  • 页数:7
  • CN:02
  • ISSN:31-1346/TB
  • 分类号:27-32+75
摘要
由于智能结构的工作环境变化多端,各种性能参数会随着环境变化而变化,先前建好的模型不再适应设计好的控制律。利用压电双晶片的驱动传感一体化特性,实现智能悬臂梁的自适应控制。基于极点配置理论,采用自校正PID控制方法在线实时设计控制参数,解决模型参数无法实时更新进而导致的控制精度低的问题。同时,将基于Neigler-Nicholes参数整定法的普通PID控制与基于自校正PID控制方法的控制效果进行对比。运用MATLAB的SIMULINK进行数值仿真并进行实验验证,对此两种控制方法的控制结果进行对比,得出采用自校正PID控制的效果更为显著和更为有效的结论。利用压电双晶片的驱动传感特性,使智能悬臂梁的自由振动得到有效控制。因此,基于自校正PID控制技术,采用压电双晶片的方法可为智能结构吸振减振提供理论研究与实验研究基础。
        Because of the variable working environment of the intelligent structures, the performance parameters will also change. The previously built model may not be adaptable any longer to the preset control law. This paper applies the characteristics of the driving-sensing integration of the piezoelectric bimorph to realize the adaptive control research of smart cantilever beams. Based on the pole assignment theory, the self-tuning PID control method is used to design the on-line control parameters to solve the problem that the model parameters cannot be updated in real time and the control precision is low. At the same time, the effect of the general PID control based on Neigler-Nicholes parameter tuning method is compared with that of the self-tuning PID control method. Through the numerical simulation based on MATLAB/SIMULINK and experimental verification, the control results of the two control methods are compared. It is shown that the self-tuning PID control is more effective. The free vibration of the smart cantilever beam is effectively controlled by using the drivingsensing characteristics of the piezoelectric bimorph. This study provides a theoretical and experimental basis for vibration absorption and vibration reduction of smart structures.
引文
[1]GEORGIOU GEORGIOS,GEORGIA A FOUTSITZI,GEORGIOS E STAVROULAKIS.Nonlinear discrete-time multirate adaptive control of non-linear vibrations of smart beams[J].Journal of Sound And Vibration,2018,423:484-519.
    [2]WILDSCHEK A,BARTOSIEWICZ Z,MOZYRSKA D.Amulti-input multi-output adaptive feed-forward controller for vibration alleviation on a large blended wing body airliner[J].Journal of Sound and Vibration,2014,333(17):3859-3880.
    [3]WANG R L,HO S C,MA N.Active model reference vibration control of a flexible beam with surface-bonded PZT sensor and actuator[J].Journal of Vibroengineering,2016,18(1):227-237.
    [4]赵亮.基于模糊PID控制的悬臂梁振动控制研究[D].兰州:兰州理工大学,2016.
    [5]ZHU QIAO,YUE JUN ZHOU,LIU WEI QUN.Active vibration control for piezoelectricity cantilever beam:an adaptive feedforward control method[J].Smart Materials and Structures,2017,26(4).
    [6]ZHANG TING,LI HONG GUANG.Adaptive pole placement control for vibration control of a smart cantilevered beam in thermal environment[J].Journal of Vibration and Control,2013,19(10):1460-1470.
    [7]KOOFIGAR HAMID REZA,AMELIAN SHAHAB.Active vibration suppression in smart structures subjected to model uncertainties and environmental disturbances:an adaptive approach[J].Journal of Vibration and Control,2013,19(13):2046-2053.
    [8]ZHANG TING,LI HONG GUANG,ZHONG ZUOYANG.Hysteresis model and adaptive vibration suppression for a smart beam with time delay[J].Journal of Sound and Vibration,2015,3(58):35-47.
    [9]AKIN ONUR,SAHIN MELIN.Active neuro-adaptive vibration suppression of a smart beam[J].Smart Structures and Systems,2017,20(6):657-668.
    [10]CHAKRABARTI ARIJIT,CHAKRABORTY AVIJIT,SADHU PRADIP KUMAR.A fuzzy self-tuning pid controller with a derivative filter for power control in induction heating systems[J].Journal of Power Electronics,2017,17(6):1577-1586.
    [11]王小伟,周美娇,王芳.基于MATLAB的自校正PID控制研究[J].微计算机信息,2011,27(12):37-39.
    [12]孙宇,刘高同,顾志飞,等.热真空试验中的自校正PID控制策略[J].航天器环境工程,2016,33(3):333-336.
    [13]张斌.压电双晶片型微位移放大机构研究[D].焦作:河南理工大学,2010.
    [14]俞洁.智能悬臂梁压电片布置与振动主动控制技术的研究[D].南京:河海大学,2006.
    [15]田海民.智能悬臂梁的振动控制及其优化配置[D].兰州:兰州理工大学,2008.
    [16]庞中华,崔红.系统辨识与自适应控制MATLAB仿真(修订版)[M].北京:北京航空航天大学出版社,2013.
    [17]陈岩.基于Ziegler-Nichols参数整定方法的张力控制系统研究[D].吉林:东北大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700