用户名: 密码: 验证码:
原位微米/纳米TiC颗粒弥散强化304不锈钢的高温蠕变特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High Temperature Creep Characteristics of In-Situ Micro-/Nano-meter TiC Dispersion Strengthened 304 Stainless Steel
  • 作者:倪自飞 ; 薛烽
  • 英文作者:NI Zifei;XUE Feng;School of Material Science and Engineering, Southeast University;Jiangsu Key Laboratory for Structural and Functional Metal Materials Composites;
  • 关键词:金属材料 ; TiC强化钢 ; 高温蠕变 ; 应力指数 ; 蠕变激活能 ; 门槛应力
  • 英文关键词:metallic materials;;TiC strengthened steel;;high temperature creep;;stress exponent;;creep activation energy;;threshold stress
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:东南大学材料科学与工程学院;江苏省结构与功能金属复合材料重点实验室;
  • 出版日期:2019-04-25
  • 出版单位:材料研究学报
  • 年:2019
  • 期:v.33
  • 语种:中文;
  • 页:CYJB201904009
  • 页数:7
  • CN:04
  • ISSN:21-1328/TG
  • 分类号:68-74
摘要
以304SS不锈钢为母合金采用原位合成工艺制备微米/纳米TiC颗粒弥散强化304不锈钢(TiC-304SS强化钢),研究了强化钢和母合金的高温蠕变性能。结果表明:原位生成的TiC颗粒大多呈多边形,在母合金中均匀分布且与其良好结合。TiC颗粒的加入对强化钢的母合金晶粒有明显的细化作用。在700/100 MPa蠕变条件下母合金304SS蠕变后晶粒明显长大,且沿应力方向拉长。而TiC颗粒的加入抑制了母合金晶粒的长大,阻止了蠕变变形。显微组织和蠕变性能的结果表明,在强化钢和母合金的蠕变过程中位错的运动符合位错攀移机制。但是与304SS母合金相比,TiC颗粒的加入提高了TiC-304SS强化钢的蠕变表观应力指数和蠕变激活能。门槛应力、载荷传递和微结构的增强,是Ti C-304SS强化钢的蠕变增强特征。
        Micro-/nano-metered Ti C particulates dispersion strengthened 304 stainless steel(TiC-304 SS strengthened steel) were prepared by in-situ reaction technology with 2% and 5% TiC(in volume fraction) respectively. The high temperature creep properties of the plain 304 SS and two TiC-304 SS strengthened steels were investigated. The results show that the in situ formed TiC particulates, most of which exhibited polygonal shape, were distributed uniformly in the matrix of 304 SS and are well bonded with the matrix. Moreover, TiC particulates present a significant effect on the grain refinement of the steel matrix. It reveals that being subjected to creep test by100 MPa at 700 oC for 200 h, the grains of the plain304 SS grew up evidently with elongated shape along the loading direction, in the contrary, the grain growth tendency of the TiC-304 SS strengthened steels seems to be inhibited, thereby, the creep deformation was effectively reduced. The above results imply that dislocation motion in the three steels accords with dislocation climb mechanism. Besides, the values of apparent creep stress exponent and activate energy of the two Ti C-304 strengthened steels are higher than that of the plain 304 SS. It is proposed that the enhancement of creep performance of TiC-304 SS strengthened steel may be ascribed to the enhanced threshold stress and load transfer barrier, as well as the microstructural strengthening effect.
引文
[1]Wu C L, Zhang S, Zhang C H, et al. Formation mechanism and phase evolution of in situ synthesizing Ti C-reinforced 316L stain-less steel matrix composites by laser melting deposition[J]. Mate-rials Letters, 2018, 15(217):304
    [2]Das K, Bandyopadhyay T K, Chatterjee S. Synthesis and character-ization of austenitic steel matrix composite reinforced with in-situ Ti C particles[J]. Journal Materials Science Letters, 2005, 40(18):5007
    [3]Wu Q L, Sun Y S, Yang C D, et al. Microstructure and mechanical properties of common straight carbon steels strengthened by TiC dispersion[J]. Materials Transactions, 2006, 47:2393
    [4]Lahouel, A, Boudebane, S, Iost, A, et al. A new method to fabri-cate Fe-TiC composite using conventional sintering and steam hammer[J]. International Journal of Engineering Research in Afri-ca, 2017, 29:28
    [5]Liu, Z L, Liu, X Q, Jiang, X D. Investigation on the Fe-based PM materials reinforced by In Situ synthesized TiC particulates[J].Particulate Science and Technology, 2017, 35(6):653
    [6]Olejnik E, Szymanski L, Kurtyka P, et al. Hardness and Wear resis-tance of TiC-Fe-Cr locally reinforcement produced in cast steel[J].Archives of Foundry Engineering, 2016, 16(2):89
    [7]Wang J, Fu S J, Ding Y C. Microstructure and wear property of TiC particles reinforced iron matrix composite produced in-situ[J].Journal of Sichuan University(Engineering Science Edition),2008, 40(5):111(王静,伏思静,丁义超.原位合成Ti C/Fe基复合材料的组织结构和磨损性能[J].四川大学学报(工程科学版), 2008, 40(5):111)
    [8]Sobula S, Olejnik E, Tokarski T. Wear resistance of Ti C reinforced cast steel matrix composite[J]. Archives of Foundry Engineering,2017, 17(1):143
    [9]Ni Z F, Sun Y S, Xue F, et al. Study on fabrication, microstructure and properties of in situ Ti C particle on dispersion-strengthened304 stainless steel[J]. Acta Metallurgica Sinica, 2010, 46(8):935(倪自飞,孙扬善,薛烽等.原位TiC颗粒弥散强化304不锈钢的制备及组织性能研究[J].金属学报, 2010, 46(8):935)
    [10]Ni Z F, Sun Y S, Xue F, et al. Evaluation of electroslag remelting in TiC particle reinforced 304 stainless steel[J]. Materials Science and Engineering A, 2011, 528(18):5664
    [11]Blum W. On the evolution of the dislocation structure during work hardening and creep[J]. Scripta Metallurgica, 1984, 18(12):383
    [12]Guy A G, Hren J J. Translated by XU J N. Physical Metallurgy Principles[M]. Beijing:China Machine Press, 1981(Guy A G, Hren J J.徐纪楠译.物理冶金学原理[M].北京:机械工业出版社, 1981)
    [13]Evans R W, Wilshire B. Creep of Metals and Alloys[M]. London:The Institute of Metals, 1985
    [14]Xu Z Y, Li P X. Introduction to Materials Science[M]. Shanghai:Shanghai Scientific&Technical Publishers, 1986(徐祖耀,李鹏兴.材料科学导论[M].上海:上海科学技术出版社, 1986)
    [15]Meng L J, Xing H, Pang G W, et al. High-temperature creep and fatigue behaviors of AL6XN super austenite steel[J]. Atomic Ener-gy Science and Technology, 2009, 43(6):509(孟丽君,邢辉,庞淦文等. AL6XN超级奥氏体钢的高温蠕变及疲劳行为研究[J].原子能科学技术, 2009, 43(6):509)
    [16]Zhou Q, Ma Z Y, Zhao J, et al. Creep deformation and fracture of dispersoids and SiC articulates reinforced Al base composites[J].Acta Metallurgica Sinica, 1998, 34(1):107(周清,马宗义,赵杰等.弥散质点和SiC颗粒复合强化铝基复合材料蠕变形变与断裂[J].金属学报, 1998, 34(1):107)
    [17]Ranganath S, Mishra RS. Steady state creep behavior of particu-late-reinforced titanium matrix composites[J]. Acta Materialia.1996, 44(3):927
    [18]Wei X W, Zu X T, Fu H. Compressive creep resistance of Mg-14Li-Al-MgO/Mg2Si composites[J]. Materials Science and Tech-nology, 2006, 22(8):903
    [19]Zong B Y, Derby B. Creep behaviour of a SiC particulate rein-forced Al-2618 metal matrix composite[J]. Acta Materialia, 1997,45(1):41
    [20]Ma Z Y, Tjong S C. Creep deformation characteristics of discontin-uously reinforced aluminium-matrix composites[J]. Composites Science&Technology, 2001, 61(5):771
    [21]Chen J, Wang Z F, Bian J H, et al. High temperature creep behav-ior of Fe-Cr-Ni base composites reinforced by in situ TiC particu-lates[J]. Acta Metallurgica Sinica, 2001, 37(2):207(陈俊,王执福,边建华等.原位TiC颗粒增强Fe-Cr-Ni基复合材料的高温蠕变行为[J].金属学报, 2001, 37(2):207)
    [22]Ni Z F, Sun, Y S, Xue F, et al. Microstructure and properties of aus-tenitic stainless steel reinforced with in situ TiC particulate[J]. Ma-terials and Design, 2011, 32(3):1462
    [23]Wu Q L, Sun Y S, Xue F, et al. High temperature behaviour of TiC particulate reinforced 304 stainless steel by in situ reaction and electroslag remelting[J]. Ironmaking and Steelmaking, 2010, 37(5):326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700