用户名: 密码: 验证码:
脱合金化制备纳米多孔Ni-Fe合金及其电催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and electrocatalytic performance of nanoporous Ni-Fe alloy by dealloying
  • 作者:周琦 ; 王亚飞 ; 冯基伟 ; 李志洋
  • 英文作者:ZHOU Qi;WANG Ya-fei;FENG Ji-wei;LI Zhi-yang;State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,Lanzhou University of Technology;
  • 关键词:真空熔炼 ; 脱合金化 ; 纳米多孔Ni-Fe合金 ; 析氢电催化性能
  • 英文关键词:vacuum melting;;dealloying;;nanoporous Ni-Fe alloy;;electrocatalytic performance of hydrogen evolution
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室;
  • 出版日期:2019-04-23 16:43
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.431
  • 基金:国家自然科学基金资助项目(51661018)
  • 语种:中文;
  • 页:CLGC201904010
  • 页数:7
  • CN:04
  • ISSN:11-1800/TB
  • 分类号:81-87
摘要
采用真空熔炼与固溶相结合的方法获得原子分数为Ni_(30-x)Fe_xMn_(70)(x=0,10,20)的前驱体合金,通过脱合金化方法制备纳米多孔Ni及Ni-Fe合金,采用X射线衍射(XRD)、扫描电子显微镜(SEM)分析合金相组成和微观结构,运用线性扫描伏安法、交流阻抗、方波电位法及计时电位法研究电极的析氢电催化性能。结果表明:加入Fe获得了片状结构的纳米多孔Ni-Fe合金,提高了纳米多孔Ni的表面积,且Fe与Ni产生协同效应,能够有效提高合金的析氢电催化活性。当Fe含量为10%(原子分数)时,脱合金化得到的纳米多孔Ni-Fe合金表面积最大,析氢电催化性能最好,在0.1A/cm~2电流密度下,析氢过电位仅56mV,经10h连续电解,表现出良好的电催化活性和电化学稳定性。
        The precursor alloy with atomic fraction is Ni_(30-x)Fe_xMn_(70)(x=0,10,20) by means of vacuum melting and solid solution, using the method of dealloying to nanoporous Ni and Ni-Fe alloy, with XRD, SEM phase compositions and microstructure were analyzed.The electrocatalytic performance for hydrogen evolution reaction was investigated by linear sweep voltammetry(LSV), electrochemical impedance spectroscopy(IMP),square wave potential technique(SWPT) and chrono potentiometry(CP).The results show that the nanoporous Ni-Fe alloy with lamellar structure is obtained by adding Fe, which improves the surface area of nanoporous Ni, and synergistic effect between Fe and Ni is produced, which can effectively improve the electrocatalytic activity of hydrogen evolution of the alloy.When the atom fraction of Fe is 10%, the surface area of nanoporous Ni-Fe alloy obtained by dealloying is the largest, and the electrocatalytic performance of hydrogen evolution is the best. Under the current density of 0.1 A/cm~2, hydrogen evolution overpotential is only 56 mV,after continuous electrolysis for 10 h,the alloy exhibits the high electrocatalytic activity and good electrochemical stability.
引文
[1] URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis: current status and future trends[J]. Proceedings of the IEEE,2012,100(2):410-426.
    [2] KONG D S, WANG H T, LU Z Y, et al. CoSe2nanoparticles grown on carbon fiber paper: an efficient and stable electroca-talyst for hydrogen evolution reaction[J].Journal of the American Chemical Society,2014,136(13): 4897-4900.
    [3] MARINESCU S C, WINKLER J R, GRAY H B.Molecular mechanisms of cobalt-catalyzed hydrogen evolution[J]. Procee-dings of the National Academy of Sciences,2012,109(38): 15127-15131.
    [4] 冉敏,吴艺辉,何捍卫. 铁元素对镍基Ni-S合金涂层电极析氢性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(1):63-69. RAN M, WU Y H, HE H W. Effect of Fe on hydrogen evolution performance of Ni-based Ni-S alloy coating electrode[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(1):63-69.
    [5] 李复丽. Ni-Co-Sn和Ni-Fe-Sn合金电极的制备及其析氢性能研究[D]. 兰州:兰州大学, 2016. LI F L. Preparation and hydrogen evolution properties of Ni-Co-Sn and Ni-Fe-Sn alloy electrodes[D]. Lanzhou:Lanzhou University, 2016.
    [6] 王宏智,张晓振,黄波,等. 碳毡基体上电沉积Ni-Mo合金及其催化析氢性能[J]. 化学工业与工程, 2017, 34(1):53-59. WANG H Z, ZHANG X Z, HUANG B, et al. Electrodeposition of Ni-Mo alloy from ionic liquids and its catalytic properties for hydrogen evolution[J]. Chemical Industry and Engineering, 2017, 34(1):53-59.
    [7] 秦海森,王书亮,景阳钟,等. 不同搅拌方式对Ni-Fe-Co镀层组织结构和电催化析氢性能的影响[J]. 表面技术, 2018, 47(6):38-43. QIN H S, WANG S L, JING Y Z, et al. Effects of different stirring methods on microstructure and electro-catalytic hydrogen evolution performance of Ni-Fe-Co coatings[J]. Surface Techno-logy, 2018, 47(6):38-43.
    [8] McKONE J R, SADTLER B F, WERLANG C A, et al. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution[J]. ACS Catalysis, 2013, 3(2): 166-169.
    [9] BADAWY W A, NADY H, NEGEM M. Cathodic hydrogen evolution in acidic solutions using electrodeposited nano-crys-talline Ni-Co cathodes[J]. International Journal of Hydrogen Energy, 2014, 39(21): 10824-10832.
    [10] BACHVAROY V D, ARNAUDOVA M H, RASHKOV R S, et al. Electrochemical deposition of alloys based on Ni-Fe-Co, containing W, P, and their characterization for hydrogen evol-ution reaction[J]. Bulgarian Chemical Communications, 2011, 43(1): 115-119.
    [11] HAN Q, JIN Y, PU N W, et al. Electrochemical evolution of hydrogen on composite La-Ni-Al/Ni-S alloy film in water electr-olysis[J]. Renewable Energy, 2010, 35(12): 2627-2631.
    [12] PASEKA I.Hydrogen evolution reaction on Ni-P alloys:the internal stress and the activities of electrodes[J]. Electrochimica Acta, 2008, 53(13): 4537-4543.
    [13] MECH K, ZABINSKI P, MUCHA M, et al. Electrodeposition of catalytically active Ni-Mo alloys[J]. Archives of Metallurgy and Materials, 2013, 58(1): 227-229.
    [14] 孔亚鹏,陈建设,刘奎仁,等. 脉冲镀Ni-Mo-Co合金镀层及其析氢性能[J]. 东北大学学报(自然科学版), 2016, 37(6): 815-819. KONG Y P, CHEN J S, LIU K R, et al. Catalytic property of Ni-Mo-Co alloy coating prepared by pulse plating[J]. Journal of Northeastern University(Natural Science), 2016, 37(6): 815-819.
    [15] HAN Q, CUI S, PU N W, et al. A study on pulse plating amorphous Ni-Mo alloy coating used as HER cathode in alkaline medium[J]. International Journal of Hydrogen Energy, 2010, 35(11): 5194-5201.
    [16] 谭秀兰,唐永建,刘颖,等. 去合金化制备纳米多孔金属材料的研究进展[J].材料导报, 2009, 23(3): 68-76. TAN X L, TANG Y J, LIU Y, et al. Progress in research on preparations of nanoporours metals by dealloying[J]. Materials Review, 2009, 23(3): 68-76.
    [17] ERLEBACHER J, AZIZ M J, KARMA A, et al. Evolution of nanoporosity in dealloying[J]. Nature, 2001, 410(6827): 450-453.
    [18] 周琦,吴海涛,贾建刚,等. 纳米多孔镍的多层次结构及其影响因素[J]. 材料热处理学报, 2013, 34(8): 11-15. ZHOU Q, WU H T, JIA J G, et al. Fabrication of nanoporous Ni with multi-hierarchical structure and its influencing factors[J]. Transactions of Materials and Heat Treatment, 2013, 34(8): 11-15.
    [19] 黄金昭,徐征,李海玲,等. 纳米晶Ni-Mo-Fe催化阴极的制备与表征[J]. 北京交通大学学报, 2007, 31(6): 35-37. HUANG J Z, XU Z, LI H L, et al. Preparation and chara-cterization of nanocrystalline Ni-Mo-Fe as cathode catalyst[J]. Journal of Beijing Jiaotong University, 2007, 31(6): 35-37.
    [20] 张卫国,尚云鹏,刘丽娜,等. 电化学法制备Ni-W-P纳米线阵列电极及其催化析氢性能[J]. 物理化学学报, 2011, 27(4): 900-904. ZHANG W G, SHANG Y P, LIU L N, et al. Electrochemical preparation of a Ni-W-P nanowire array and its photoelectrocat-alytic activity for the hydrogen evolution reaction[J]. Acta Physico-Chimica Sinica, 2011, 27(4): 900-904.
    [21] 王进. 镍基Ni-Mo合金电极的制备及其电催化析氢性能研究[D].重庆:重庆大学, 2013. WANG J. Studies on the electrocatalytic hydrogen evolution of Ni based Ni-Mo alloy electrodes[D]. Chongqing: Chongqing University, 2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700