用户名: 密码: 验证码:
石墨相氮化碳光催化剂改性的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Research Progress of Modified g-C_3N_4 Composite Photocatalyst
  • 作者:李昱慧 ; 张静 ; 张昱屾 ; 陈常东
  • 英文作者:Li Yuhui;Zhang Jing;Zhang Yushen;Chen Changdong;College of Chemistry Chemical Industry & Environment,Liaoning Shihua University;
  • 关键词:催化剂 ; 石墨相氮化碳 ; 复合材料 ; 降解
  • 英文关键词:Catalyzer;;g-C3N4;;Compound material;;Degradation
  • 中文刊名:SYHX
  • 英文刊名:Journal of Petrochemical Universities
  • 机构:辽宁石油化工大学化学化工与环境学部;
  • 出版日期:2019-04-10 09:57
  • 出版单位:石油化工高等学校学报
  • 年:2019
  • 期:v.32;No.136
  • 基金:国家自然科学基金(21573101);; 辽宁省高端人才项目([2015]153);; 辽宁省高等学校创新人才支持计划项目(LR2017011);; 辽宁省百千万人才工程项目([2017]96)
  • 语种:中文;
  • 页:SYHX201902001
  • 页数:7
  • CN:02
  • ISSN:21-1345/TE
  • 分类号:3-9
摘要
石墨相氮化碳(g-C_3N_4)是具有二维层状结构的材料,作为非金属半导体光催化剂有可见光吸收、能带等级可调变、化学稳定性高、绿色环保无污染等诸多优点。结合近几年国内外g-C_3N_4研究人员取得的最新成果及研究进展,从掺杂物质结构的角度综述了分子结构改变、单质掺杂、半导体负载及三元复合等g-C_3N_4的多种改性方法及催化机理,并对未来如何提升g-C_3N_4的光催化性能进行展望。
        Graphitic carbon nitride(g-C_3N_4) possesses a unique two-dimensional structure, which is used as a kind of excellent nonmetallic semiconductor photocatalysts, owing to its visible light absorption, adjustable energy band grade, high stability, and so on. This review focus on recent research results and progress, and modification and catalytic mechanism related to photocatalysts are summarized based on microstructure changing, elemental doping, semiconductor loading, and multiphase composite of g-C_3N_4. Finally, the review presents the viewpoint for the development of g-C_3N_4-based photocatalytic performance.
引文
[1] Wang M,Ju P,Li J J,et al. Facile synthesis of MoS2/gC3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting[J]. ACS Sustainable Chemistry&Engineering,2017,5(9):78787886.
    [2] Ding J,Long G,Yang L,et al. Photocatalytic reductive dechlorination of 2chlorodibenzopdioxin by Pd modified gC3N4,photocatalysts under UVvis irradiation:Efficacy,kinetics and mechanism[J]. Journal of Hazardous Materials,2018,355:7481.
    [3] Dong H,Guo X,Yang C,et al. Synthesis of gC3N4by different precursors under burning explosion effect and its photocatalytic degradation for tylosin[J]. Applied Catalysis B Environmental,2018,230:6576.
    [4] Kang S,Zhang L,He M,et al.“Alternated cooling and heating”strategy enables rapid fabrication of highlycrystalline gC3N4nanosheets for efficient photocatalytic water purification under visible light irradiation[J]. Carbon,2018,10:1930.
    [5] Liu Q,Wang X L,Yang Q,et al. A novel route combined precursorhydrothermal pretreatment with microwave heating for preparing holey gC3N4nanosheets with high crystalline quality and extended visible light absorption[J]. Applied Catalysis B:Environmental,2018,225:2229.
    [6] Hao R R,Wang G H,Jiang C J,et al. In situ hydrothermal synthesis of gC3N4/TiO2heterojunction photocatalysts with high specific surface area for Rhodamine B degradation[J]. Applied Surface Science,2017,411:400410.
    [7] Rezaei B,Irannejad N,Ensafi A A. 3D TiO2selfacting system based on dyesensitized solar cell and gC3N4/TiO2MIP to enhanced photodegradation performance[J]. Renewable Energy,2018,123:281293.
    [8]吴丹,王椰,李梦瑶,等.石墨相氮化碳复合光催化剂的制备及其光催化性能的研究进展[J].当代化工研究,2017(3):124125.Wu D,Wang Y,Li M Y,et al. Study development of the preparation of graphite carbon nitride composite photocatalyst and its photocatalyst property[J]. Chenmical Intermediate,2017(3):124125.
    [9] Lin W,Lu K,Zhou S,et al. Defects remodeling of gC3N4nanosheets by fluorinecontaining solvothermal treatment to enhance their photocatalytic activities[J]. Applied Surface Science,2018,3:140.
    [10] Cheng Q,He Y,Ge Y,et al. Ultrasensitive detection of heparin by exploiting the silver nanoparticleenhanced fluorescence of graphitic carbon nitride(gC3N4)quantum dots[J]. Microchimica Acta,2018,185(7):332.
    [11] Lin B,An H,Yan X Q,et al. Fishscale structured gC3N4nanosheet with unusual spatial electron transfer property for highefficiency photocatalytic hydrogen evolution[J]. Applied Catalysis B:Environmental,2017,210:173183.
    [12] Fang W J,Liu J Y,Yu L,et al. Novel(Na,O)codoped gC3N4with simultaneously enhanced absorption and narrowed bandgap for highly efficient hydrogen evolution[J]. Applied Catalysis B:Environmental,2017,209:631636.
    [13] Teter D M,Hemley R J. Lowcompressibility solid[J]. Science,1989,245:841842.
    [14] Ma X G,LüY H,Xu J,et al. A strategy of enhancing the photoactivity of gC3N4via doping of nonmetal elements:A firstprinciples study[J]. The Journal of Physical Chemistry C,2012,116(44):2348523493.
    [15]龚焱.石墨相gC3N4复合光催化剂的制备及其光催化性能研究[D].大连:大连理工大学,2016.
    [16] Yu Y,Yan W,Gao W Y,et al. Aromatic ring substituted gC3N4for enhanced photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A,2017,5(33):1719917203.
    [17] Gu Q,Gong X,Jia Q,et al. Compact carbon nitride based copolymer film with controllable thickness for photoelectrochemical water splitting[J]. Journal of Materials Chemistry A,2017,5:1906219071.
    [18] Wang J M,Zheng Y,Peng T Y,et al. Asymmetric zinc porphyrin derivativesensitized graphitic carbon nitride for efficient visiblelightdriven H2production[J]. ACS Sustainable Chemistry&Engineering,2017,5(9):75497556.
    [19] Li H P,Xia Y G,Hu T X,et al. Enhanced charge carrier separation of manganese(II)doped graphite carbon nitride:Formation of NMn bonds from redox reactions[J]. Journal of Materials Chemistry A,2018,6:62386243.
    [20] Liu S,Zhu H L,Yao W Q,et al. One step synthesis of Pdoped gC3N4with the enhanced visible light photocatalytic activity[J]. Applied Surface Science,2018,430:309315.
    [21] Wang Y Y,Zhao S,Zhang Y W,et al. Onepot synthesis of Kdoped gC3N4nanosheets with enhanced photocatalytic hydrogen production under visiblelight irradiation[J]. Applied Surface Science,2018,440:258265.
    [22] Yan S C,Li Z S,Zou Z G. Photodegradation of Rhodamine B and methyl orange over borondoped gC3N4under visible light irradiation[J]. Langmuir,2010,26(6):38943901.
    [23] Bomberg M,Raulio M,Jylh?S,et al. CO2and carbonate as substrate for the activation of the microbial community in 180 m deep bedrock fracture fluid of outokumpu deep drill hole,Finland[J]. AIMS Microbiology,2017,3(4):846871.
    [24] Wang M,Guo P Y,Zhang Y,et al. Synthesis of hollow lanternlike Eu(III)doped gC3N4with enhanced visible light photocatalytic perfomance for organic degradation[J]. Journal of Hazardous Materials,2018,349:224233.
    [25] Luo B F,Chen M,Zhang Z Y,et al. Highly efficient visiblelightdriven photocatalytic degradation of tetracycline by a Zscheme gC3N4/Bi3TaO7nanocomposite photocatalyst[J]. Dalton Transactions,2017,46(26):84318438.
    [26]党聪哲,李一兵,王彦斌,等. K2S2O8强化gC3N4薄膜电极光电催化降解Cu(CN)32-并同步回收Cu[J].环境科学,2018,39(1):145151.Dang C Z,Li Y B,Wang Y B,et al. Enhanced photoelectrocatalytic oxidation of Cu(CN)32-and synchronous cathodic deposition of Cu by peroxydisulfate[J]. Environmental Science,2018,39(1):145151.
    [27] Zhao H,Dong Y M,Jiang P P,et al. In situ lightassisted preparation of MoS2on graphitic C3N4nanosheets for enhanced photocatalytic H2production from water[J]. Journal of Materials Chemistry A,2015,3(14):73757381.
    [28] Cui L F,Ding X,Wang Y G,et al. Facile preparation of Zscheme WO3/gC3N4composite photocatalyst with enhanced photocatalytic performance under visible light[J]. Applied Surface Science,2017,391:202210.
    [29] Xiao D,Dai K,Qu Y,et al. Hydrothermal synthesis ofαFe2O3/gC3N4composite and its efficient photocatalytic reduction of Cr(VI)under visible light[J]. Applied Surface Science,2015,358:181187.
    [30] He Y M,Cai J,Zhang L H,et al. Comparing two new composite photocatalysts,tLaVO4/gC3N4and mLaVO4/gC3N4,for their structures and performances[J]. Industrial&Engineering Chemistry Research,2014,53(14):59055915.
    [31] Xu Y G,Huang S Q,Xie M,et al. Magnetically separable Fe2O3/gC3N4catalyst with enhanced photocatalytic activity[J].RSC Advances,2015,5(116):9572795735.
    [32] Kumar M P,Murugesan P,Vivek S,et al. NiWO3nanoparticles grown on graphitic carbon nitride(gC3N4)supported toray carbon as an efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reactions[J]. Particle&Particle Systems Characterization,2017,34(10):1700043.
    [33] Jiang L B,Yuan X Z,Zeng G M,et al. Insitu synthesis of direct solidstate dual Zscheme WO3/gC3N4/Bi2O3photocatalyst for the degradation of refractory pollutant[J]. Applied Catalysis B:Environmental,2018,227:376385.
    [34] Yang L Q,Huang J F,Shi L,et al. Sb doped SnO2decorated porous gC3N4nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation[J]. Applied Catalysis B:Environmental,2018,221:670680.
    [35] Chen Y F,Huang W X,He D L,et al. Construction of heterostructured gC3N4/Ag/TiO2microspheres with enhanced photocatalysis performance under visiblelight irradiation[J]. ACS Applied Materials&Interfaces,2014,6(16):1440514414.
    [36] Xue J J,Ma S S,Zhou Y M,et al. Facile photochemical synthesis of Au/Pt/gC3N4with plasmonenhanced photocatalytic activity for antibiotic degradation[J]. ACS Applied Materials&Interfaces,2015,7(18):96309637.
    [37] Luo X L,He G L,Fang Y P,et al. Nickel sulfide/graphitic carbon nitride/strontium titanate(NiS/gC3N4/SrTiO3)composites with significantly enhanced photocatalytic hydrogen production activity[J]. Journal of Colloid and Interface Science,2018,518:184191.
    [38] Yuan Y J,Yang Y,Li Z J,et al. Promoting charge separation in gC3N4/Graphene/MoS2photocatalysts by twodimensional nanojunction for enhanced photocatalytic H2production[J]. ACS Applied Energy Materials,2018,1(4):14001407.
    [39] Kong H J,Won D H,Kim J,et al. Sulfurdoped gC3N4/BiVO4composite photocatalyst for water oxidation under visible light[J]. Chemistry of Materials,2016,28(5):13181324.
    [40]钟利丹,付晓娟.石墨相氮化碳的研究进展[J].内蒙古石油化工,2017(6):2425.Zhong L D,Fu X J. Research progress of carbon nitride in graphite phase[J]. Inner Mongolia Petrochemical Industry,2017(6):2425.
    [41]陈秋丽,彭富昌,刘双,等.类石墨相C3N4光催化剂的制备及改性研究进展[J].化工技术与开发,2017,46(9):2529.Chen Q L,Peng F C,Liu S,et al. Progress in preparation and modification of graphitelike C3N4photocatalyst[J].Technology&Development of Chemical Industry,2017,46(9):2529.
    [42] Nikokavoura A,Trapalis C. Graphene and gC3N4based photocatalysts for NOx removal:A review[J]. Applied Surface Science,2018,430:1852.
    [43] Fu J W,Yu J G,Jiang C J,et al. gC3N4based heterostructured photocatalysts[J]. Advanced Energy Materials,2018,8(3):1701503.
    [44] Wen J Q,Xie J,Chen X B,et al. A review on gC3N4based photocatalysts[J]. Applied Surface Science,2017,391:72123.
    [45]魏潘鹏,焦健豪,王焕,等. 12元环硅铝分子筛酸性及其B酸中心可接近性探究[J].石油化工高等学校学报,2018,31(4):2731.Wei P P,Jiao J H,Wang H,et al. The acidity and accessibility of aluminosilicate zeolites with 12Ring channels[J]. Journal of Petrochemical Universities,2018,31(4):2731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700