用户名: 密码: 验证码:
基于水体指数的镜泊湖叶绿素a质量浓度反演研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The inversion study of chlorophyll a concentration in Jinpo Lake based on water body index
  • 作者:刘宇 ; 李旭龙
  • 英文作者:LIU Yu;LI Xulong;College of History and Culture,Mudanjiang Normal University;
  • 关键词:叶绿素a质量浓度 ; 遥感反演 ; 水体指数 ; 湖泊水质 ; 镜泊湖
  • 英文关键词:chlorophyll a concentration;;remote inversion;;water body index;;lake water quality;;Jinpo Lake
  • 中文刊名:HNND
  • 英文刊名:Journal of Hunan Agricultural University(Natural Sciences)
  • 机构:牡丹江师范学院历史与文化学院;
  • 出版日期:2019-04-22
  • 出版单位:湖南农业大学学报(自然科学版)
  • 年:2019
  • 期:v.45;No.251
  • 基金:黑龙江省教育厅项目(1353MSYQN025);; 牡丹江师范学院服务地方专项(FD201602,FD2017001)
  • 语种:中文;
  • 页:HNND201902011
  • 页数:7
  • CN:02
  • ISSN:43-1257/S
  • 分类号:62-68
摘要
结合2015年9月镜泊湖30个有效采样点的实测叶绿素a质量浓度和同步Landsat 8 OLI数据,通过分析叶绿素a的光谱特征,在Landsat8OLI数据11个波段中,选择前7个波段(B1、B2、B3、B4、B5、B6、B7)单独或组合建立叶绿素a质量浓度反演模型。利用多元统计分析法分析发现,波段组合B5/B3、(B3+B4)/B5、B3/(B1+B5)模型精度较好,决定系数R2分别为0.754 1、0.774 3、0.739 6。作为对比,另外选取典型的水体指数建立叶绿素a质量浓度反演模型;其中归一化水体指数(NDWI)、改迚归一化水体指数(MNDWI)、增强型水体指数(EWI)模型较好,R2均大于0.7,分别为0.747 6、0.726 7、0.763 5。选取上述6种模型,利用剩余采样点迚行精度检验,结果预测值与实测值之间的R2为0.0711~0.8094,其中,NDWI模型反演R2值为0.7614,平均相对误差为13.0%,最大相对误差为22.4%,最小相对误差为1.4%;均方根误差为0.20μg/L。与波段组合模型相比,水体指数模型虽然精度没有较大的提高,但其模型摆脱了波段的随机组合,更适合用来作为镜泊湖叶绿素a常用的监测方法。通过NDWI模型对镜泊湖叶绿素a质量浓度的反演,发现镜泊湖叶绿素a质量浓度分布具有一定的空间差异性,大体趋势为靠近岸边的浅水区叶绿素a质量浓度高于湖心的深水区,有河流注入的来水区高于其他湖区。
        Combined the chlorophyll a concentrations of 30 sampling sites in Jinpo Lake collected in September of 2015 with the Landsat 8 OLI data,the spectral characteristics of chlorophyll a were analyzed.In 11 bands of Landsat 8 OLI data,the first seven bands(B1,B2,B3,B4,B5,B6,B7) were selected to construct the chlorophyll a concentration inversion model individually or in combination using multivariate statistical analysis method.The results showed that B5/B3,(B3+B4)/B5,and B3/(B1+B5) model showed better accuracy with R2 0.754 1,0.774 3 and 0.739 6 respectively.As a comparison,several typical water body index models were selected,in which the NDWI,MNDWI and EWI models had their R2 larger than 0.7,(0.747 6,0.726 7 and 0.763 5 respectively).Then we chose the six models for further regression analysis.The results of the 6 models showed that the R2 between predicted values and measured chlorophyll a were in the range 0.071 1-0.809 4.In the NDWI model,R2 was 0.761 4 with average relative error of 13%,the maximum relative error of 22.4%,the minimum relative error of 1.4%,and the root mean square error of 0.20 μg/L.Compared with the band combination model,the water body index model did not need the band random combination and was more suitable as a common method for monitoring water quality in lakes.The spatial distribution of chlorophyll a concentrations showed some space variability.The chlorophyll a concentrations in shallow water areas were higher than those in the central area,whereas the chlorophyll a concentrations in the inlet area were higher than those in other areas.
引文
[1]宋月君,莫明浩,汪邦稳,等.基于神经网络模型的水源地水质参数反演研究[J].中国农村水利水电,2011(2):98-100,108.
    [2]史锐,张红,岳荣,等.基于小波理论的干旱区内陆湖泊叶绿素a的TM影像遥感反演[J].生态学报,2017,37(3):1043-1053.
    [3]田野,郭子祺,乔彦超,等.基于遥感的官厅水库水质监测研究[J].生态学报,2015,35(7):2217-2226.
    [4]烟贯发,张雪萍,王书玉,等.基于改迚的PSO优化LSSVM参数的松花江哈尔滨段悬浮物的遥感反演[J].环境科学学报,2014,34(8):2148-2156.
    [5]李苗,臧淑英,吴长山.基于TM影像的克钦湖叶绿素a浓度反演[J].农业环境科学学报,2012,31(12):2473-2479.
    [6]朱云芳,朱利,李家国,等.基于GF-1WFV影像和BP神经网络的太湖叶绿素a反演[J].环境科学学报,2017,37(1):130-137.
    [7]吕恒,江南,罗潋葱,等.基于TM数据的太湖叶绿素A浓度定量反演[J].地理科学,2006,26(4):472-477.
    [8]冯驰,釐琦,王艳楠,等.基于GOCI影像和水体光学分类的内陆湖泊叶绿素a浓度遥感估算[J].环境科学,2015,36(5):1557-1564.
    [9]DEKKER A G.Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing[D].Amsterdam:Vrije University Amsterdam,1993.
    [10]KOPONEN S,PULLIAINEN J,KALLIO K,et al.Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data[J].Remote Sensing of Environment,2002,79(1):51-59.
    [11]HOOGENBOOM H J,DEKKER A G,ALTHUIS I A.Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters[J].Remote Sensing of Environment,1998,65(3):330-340.
    [12]HASSANI M,CHABOU M C,HAMOUDI M,et al.Index of extraction of water surfaces from Landsat 7ETM+images[J].Arabian Journal of Geosciences,2015,8(6):3381-3389.
    [13]BABAN S M J.Detecting water quality parameters in the Norfolk Broads,UK,using Landsat imagery[J].International Journal of Remote Sensing,1993,14(7):1247-1267.
    [14]DALL'OLMO G,GITELSON A A,RUNDQUIST DC.Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters[J].Geophysical Research Letters,2003,30(18):1938-1941.
    [15]杨柳,韩瑜,汪祖茂,等.基于BP神经网络的温榆河水质参数反演模型研究[J].水资源与水工程学报,2013,24(6):25-28.
    [16]刘忠华,李云梅,吕恒,等.基于偏最小二乘法的巢湖悬浮物浓度反演[J].湖泊科学,2011,23(3):357-365.
    [17]宋挺,周文鳞,刘军志,等.利用高光谱反演模型评估太湖水体叶绿素a浓度分布[J].环境科学学报,2017,37(3):888-899.
    [18]宋开山,张柏,王宗明,等.吉林查干湖水体叶绿素a含量高光谱模型研究[J].湖泊科学,2007,19(3):275-282.
    [19]段洪涛,于磊,张柏,等.查干湖富营养化状况高光谱遥感评价研究[J].环境科学学报,2006,26(7):1219-1226.
    [20]罗崇亮.基于水体指数的艾比湖湖水面积提取对比研究[J].科技创新导报,2015,12(24):34-35.
    [21]万建鹏,官云兰,叶素倩,等.基于综合权重水体指数的水体提取研究--以鄱阳湖为例[J].东华理工大学学报(自然科学版),2015,38(2):206-211.
    [22]赵文宇,姜亮亮,焦键,等.基于Landsat8数据的东道海子叶绿素a的遥感反演和监测研究[J].新疆环境保护,2017,39(3):28-35.
    [23]王小平,张飞,ABDUWASIT GHULAM,等.艾比湖流域地表水水质指标与水体指数兲系研究[J].环境科学学报,2017,37(3):900-909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700