用户名: 密码: 验证码:
洸府河入湖口人工湿地污染物去除特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:POLLUTANTS REMOVAL CHARACTERISTICS OF ESTUARY CONSTRUCTED WETLAND OF GUANGFU RIVER
  • 作者:王良杰 ; 高奔 ; 文湘华 ; 宋永会 ; 马慧
  • 英文作者:WANG Liang-jie;GAO Ben;WEN Xiang-hua;SONG Yong-hui;MA Hui;State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences;School of Environment,Tsinghua University;Jining Environmental Protection Bureau;
  • 关键词:人工湿地 ; 内源污染 ; 氨氮 ; 温度 ; 污染物削减
  • 英文关键词:constructed wetland;;endogenous pollution;;ammonia nitrogen;;temperature;;pollutants reduction
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:中国环境科学研究院环境基准与风险评估国家重点实验室;清华大学环境学院;济宁市环境保护局;
  • 出版日期:2019-04-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.250
  • 语种:中文;
  • 页:HJGC201904015
  • 页数:6
  • CN:04
  • ISSN:11-2097/X
  • 分类号:77-82
摘要
分析了2017年9月—2018年6月,洸府河入湖口人工湿地的运行情况。结果表明:COD、TN、NH_3-N和TP的各月平均出水浓度均达到GB 3838—2002《地表水环境质量标准》Ⅲ类标准;其中,出水COD未出现超标天数,其余3项指标均存在不同程度超标天数。对于COD和TN,在各月进水浓度相差较大时,进水浓度对去除率的影响较大;温度对去除率的影响不明显。2017年12月—2018年6月,湿地对COD、NH_3-N、TN和TP的削减量分别为45. 13,1. 02,20. 65,0. 40 t/月。但夏季6月的NH_3-N平均去除率为负值,可能是由于未收割的植物在湿地中腐烂成为内源污染源;在温度快速升高时,污染物释放速度加快。建议在湿地管理中,重视湿地植物的收割与妥善处置。
        This paper analyzed the performance of estuary constructed wetland of Guangfu River from September 2017 to June2018. The results showed that the average monthly effluent quality of COD,ammonia nitrogen,total nitrogen,and total phosphorus from the wetland could meet the quality requirements of the class Ⅲ Environmental Quality Standards for Surface Water( GB 3838—2002) in China,including COD of the effluent met the standard quality every day,but the other three indexes exceeded the standard values sometimes with different frequencies. As for COD and total nitrogen,when the monthly average influent concentration varied greatly,the removal rate was largely influenced by the influent concentrations but was not significantly influenced by temperature. From December 2017 to June 2018,the COD,total nitrogen,ammonia nitrogen and total phosphorus were reduced by 45. 13,1. 02,20. 65,0. 40 t/month respectively by wetlands. However,the average removal rate of ammonia nitrogen in June was negative,which might be the results of accelerated pollutants release from the unharvested plants which had been rotten in wetland as endogenous pollution sources when the temperature rose rapidly in June.Harvesting and disposing the plants in time were suggested for the wetland management.
引文
[1] Zhang Ting,Xu Dong,He Feng,et al. Application of constructed wetland for water pollution control in China during 1990—2010[J]. Ecological Engineering,2012,47:189-197.
    [2] Wu Haiming,Zhang Jian,Ngo Huu Hao,et al. A review on the sustainability of constructed wetlands for wastewater treatment:design and operation[J]. Bioresour Technol,2015,175:594-601.
    [3]管策,郁达伟,郑祥,等.我国人工湿地在城市污水处理厂尾水脱氮除磷中的研究与应用进展[J].农业环境科学学报,2012,31(12):2309-2320.
    [4] Barco A,Borin M. Treatment performance and macrophytes growth in a restored hybrid constructed wetland for municipal wastewater treatment[J]. Ecological Engineering,2017,107:160-171.
    [5] Diresa S,Birhanuc T,Ambelu A,et al. Antibiotic resistant bacteria removal of subsurface flow constructed wetlands from hospital wastewater[J]. Journal of Environmental Chemical Engineering,2018,6(4):4265-4272.
    [6]常江,于硕,冯姗姗,等.中国采煤塌陷型湿地研究进展[J].煤炭工程,2017,49(4):125-128.
    [7]杨国权,素兰.采煤塌陷地复垦与构造水域生态系统建设——以徐州市贾汪区煤矿为例[J].中国资源综合利用,2008,26(5):18-20.
    [8]李勇,王文鹏,刘静.人工湿地脱氮除磷影响因素及改进措施研究[J].湿地科学与管理,2018(1):56-59.
    [9] Sims A,Gajaraj S,Zhiqiang Hu Z Q. Seasonal population changes of ammonia-oxidizing organisms and their relationship to water quality in a constructed wetland[J]. Ecological Engineering,2012,40(3):100-107.
    [10] Xu Dan,Xiao Enrong,Xu Peng,et al. How temperature affects wastewater nitrate removal in a bioelectrochemically assisted constructed wetland system[J]. Polish Journal of Environmental Studies,2018,27(2):953-958.
    [11] Peng Lian,Hua Yumei,Cai Jianbo,et al. Effects of plants and temperature on nitrogen removal and microbiology in a pilot-scale integrated vertical-flow wetland treating primary domestic wastewater[J]. Ecological Engineering,2014,64(3):285-290.
    [12]朱健,李捍东,王平.环境因子对底泥释放COD、TN和TP的影响研究[J].水处理技术,2009,35(8):44-49.
    [13]韩琦,薛爽,刘影,等.河流底泥中溶解性有机物的释放途径及影响因素研究[J].中国环境科学,2016,36(12):3737-3749.
    [14] Wu Haiming,Zhang Jian,Guo Wenshan,et al. Secondary effluent purification by a large-scale multi-stage surface-flow constructed wetland:a case study in northern China[J]. Bioresour Technol,2017,249:1092-1096.
    [15]黄翔峰,谢良林,陆丽君,等.人工湿地在冬季低温地区的应用研究进展[J].环境污染与防治,2008,30(11):84-89.
    [16]张建,何苗,邵文生,等.人工湿地处理污染河水的持续性运行研究[J].环境科学,2006,27(9):1760-1764.
    [17]卢少勇,张彭义,余刚,等.湿地系统蒸腾蒸发损失量及污染物去除规律研究[J].中国给水排水,2008,24(7):85-87.
    [18] Lee C G,Fletcher T D,Sun G Z. Nitrogen removal in constructed wetland systems[J]. Engineering in Life Sciences,2010,9(1):11-22.
    [19]薄涛,季民.内源污染控制技术研究进展[J].生态环境学报,2017,26(3):514-521.
    [20]时红,才硕,刘方平,等.湿地植物二次污染的现状研究与探讨[C]//2015全国河湖治理与水生态文明发展论坛,广州,2015.
    [21] Li Bingxin,Yang Yuyin,Chen Jianfei,et al. Nitrifying activity and ammonia-oxidizing microorganisms in a constructed wetland treating polluted surface water[J]. Science of the Total Environment,2018,628/629:310-318.
    [22]陈涛,于鲁冀,柏义生,等.冬、夏两季组合湿地系统的净化力对比分析[J].环境工程,2018,36(5)16-20.
    [23]卫小松,夏品华,袁果,等.湿地植物对富营养化水体中氮磷的吸收及去除贡献[J].西南农业学报,2016,29(2):408-412.
    [24]余红兵,杨知建,肖润林,等.水生植物的氮磷吸收能力及收割管理研究[J].草业学报,2013,22(1):294-299.
    [25]施伊丽,万瑜,金赞芳.杭州西湖底泥氮释放通量及影响因素研究[J].环境科技,2016,29(1):46-50.
    [26]王睿,左剑恶,张宇,等.凉水河底泥氮磷释放影响因素研究[J].广东化工,2018(9):1-3.
    [27]卢俊平,刘廷玺,马太玲,等.不同环境要素条件下大河口水库底泥氮磷释放特征研究[J].内蒙古农业大学学报(自然科学版),2015(1):109-113.
    [28]张依然,王仁卿,张建,等.大型人工湿地生态可持续性评价[J].生态学报,2012,32(15):4803-4810.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700