用户名: 密码: 验证码:
矩形截面件径向锻造工艺优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization on radial forging process of rectangular cross-section billet
  • 作者:徐方 ; 董湘怀 ; 王新宝 ; 李正东 ; 刘强
  • 英文作者:Xu Fang;Dong Xianghuai;Wang Xinbao;Li Zhengdong;Liu Qiang;National Engineering Research Center of Die & Mold CAD,Shanghai Jiao Tong University;Key Laboratory of Intelligent Control of Metal Forming Equipment,Lanzhou Lan Shi Energy Equipment Engineering Research Institute Co.,Ltd.;
  • 关键词:径向锻造 ; 矩形截面件 ; 锻透性 ; 锻造功率 ; 锻造载荷
  • 英文关键词:radial forging;;rectangular cross-section billet;;forging permeability;;forging power;;forging load
  • 中文刊名:DYJE
  • 英文刊名:Forging & Stamping Technology
  • 机构:上海交通大学模具CAD国家工程研究中心;兰州兰石能源装备工程研究院有限公司金属塑性成形装备智能控制重点实验室;
  • 出版日期:2019-04-23 10:09
  • 出版单位:锻压技术
  • 年:2019
  • 期:v.44;No.283
  • 基金:国家自然科学基金资助项目(51775335)
  • 语种:中文;
  • 页:DYJE201904001
  • 页数:9
  • CN:04
  • ISSN:11-1942/TG
  • 分类号:7-15
摘要
对于矩形截面件径向锻造问题,目前尚没有相应的锻造载荷、锻造功率和锻件质量相关的计算模型,以及工艺规划的标准。根据径向锻造变形特点,将平面变形条件下锻造载荷公式推广到矩形截面件锻造载荷计算,将预测圆截面件径向锻造锻透率的三角形法则推广到矩形截面件并进行了修正,提出一种锻造功率计算模型,计算误差都在10%左右。然后采用多目标加权的方法,将锻造效率、锻件质量和锻造载荷模型转化成单一的优化目标函数,对道次、压下率和送进率等工艺参数进行优化;同时,采用4个工艺实例验证了工艺优化算法的优化和评估能力,并最终将工艺优化算法写入软件,应用到径向锻造自动化生产过程。
        For the problem of radial forging of rectangular cross-section billet,there are no corresponding calculation models to evaluate forging load,forging power and quality of forgings at present,as well as the standards about forging process planning. According to the deforming characteristic of radial forging,the forging load formula in the plane deformation condition was applied to calculating the forging load of rectangular cross-section billet,and the triangle rule to assess the forging permeability of radial forging for circular cross-section billet was applied to the rectangular cross-section billet and was modified. Then,a calculating model of forging power was presented,and the calculating deviation is generally about 10%. Furthermore,the models of forging efficiency,quality of forgings and forging load were transformed into a single optimization objective function by multi-objective weighting method,and the process parameters such as pass,reduction rate and feeding rate were optimized. At the same time,four process instances were adopted to verify the optimization and evaluation ability of the process optimization algorithm,finally the process optimization algorithm was written into the software and applied to the automatic production process of radial forging.
引文
[1]Lahoti G,Altan T.Analysis of the radial forging process for manufacturing rods and tubes[J].Journal of Engineering for Industry,1976,98(1):265-271.
    [2]Afrasiab H,Movahhedy M R.Generalized slab method analysis of radial forging with a general curved shape die[A].ASME.Proceedings of the 8th Biennial Conference on Engineering Systems Design and Analysis[C].New York:American Society of Mechanical Engineers,2006.
    [3]Subramanian T L,Venkateshwar R,Lahoti G D,et al.Experimental and computer modeling of die cavity fill in radial forging of riflings[A].Proceeding of Process Modeling Sessions,Process Modeling Fundamentals and Applications to Metals[C].USA,1978.
    [4]Ghaei A,Karimi Taheri A,Movahhedy M R.A new upper bound solution for analysis of the radial forging process[J].International Journal of Mechanical Sciences,2006,48(11):1264-1272.
    [5]董节功,周旭东,朱锦洪,等.径向锻造三维成形锻透性的数值模拟[J].机械工程材料,2007,31(3),76-78.Dong J G,Zhou X D,Zhu J H,et al.FEM simulation of forging penetration efficiency of radial forging in 3D[J].Materials for Mechanical Engineering,2007,31(3):76-78.
    [6]栾谦聪,董湘怀,吴云剑.基于经验法则的锻透深度计算公式推导与验证[J].模具技术,2013,(3):1-6.Luan Q C,Dong X H,Wu Y J.The derivation and validation of a formula calculating the forging penetration efficiency(FPE)based on empirical method[J].Die and Mold Technology,2013,(3):1-6.
    [7]Wu Y J,Dong X H,Yu Q.An upper bound solution of axial metal flow in cold radial forging process of rods[J].International Journal of Mechanical Sciences,2014,85:120-129.
    [8]Wu Y J,Dong X H.An upper bound model with continuous velocity field for strain inhomogeneity analysis in radial forging process[J].International Journal of Mechanical Sciences,2016,115-116:385-391.
    [9]Wu Y J,Dong X H.Upper bound analysis of forging penetration in a radial forging process[J].International Journal of Mechanical Sciences,2015,103:1-8.
    [10]Wu Y J,Dong X H,Yu Q.Upper bound analysis of axial metal flow inhomogeneity in radial forging process[J].International Journal of Mechanical Sciences,2015,93:102-110.
    [11]杨箫,董湘怀,周亚宁,等.矩形截面锻件的径向锻造力与展宽[J].锻压技术,2017,42(5):1-8.Yang X,Dong X H,Zhou Y N,et al.Radial forging force and spread for rectangular cross-sectional forging[J].Forging&Stamping Technology,2017,42(5):1-8.
    [12]董湘怀.金属塑性成形原理[M].北京:机械工业出版社,2011.Dong X H.Principle of Metal Forming[M].Beijing:China Machine Press,2011.
    [13]Liu X R,Zhou X D.The forging penetration efficiency of C45 steel stepped shaft radial forging with GFM forging machine[J].Advanced Materials Research,2011,154-155:593-596.
    [14]吴云剑.圆截面实心坯料冷径向锻造工艺的上限法解析[D].上海:上海交通大学,2017.Wu Y J.Theoretical Analysis for Cold Radial Forging Process of Rod Based on Upper Bound Approach[D].Shanghai:Shanghai Jiao Tong University,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700